
ar
X

iv
:c

on
d-

m
at

/0
20

62
13

 v
1

 1
2

Ju
n

20
02

A secure key-exchange protocol with an absence of injective functions

R. Mislovaty1, Y. Perchenok1, I. Kanter1 and W. Kinzel2
1 Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

2 Institut für Theoretische Physik, Universität Würzburg D-97074, Germany

The security of neural cryptography is investigated. A key-exchange protocol over a public channel
is studied where the parties exchanging secret messages use multilayer neural networks which are
trained by their mutual output bits and synchronize to a time dependent secret key. The weights
of the networks have integer values between ±L. Recently an algorithm for an eavesdropper which
could break the key was introduced by Shamir et al. [1]. We show that the synchronization time
increases with L2 while the probability to find a successful attacker decreases exponentially with L.
Hence for large L we find a secure key-exchange protocol which depends neither on number theory
nor on injective trapdoor functions used in conventional cryptography.

The ability to build a secure channel is one of the most
challenging fields of research in modern communication
[2]. One of the fundamental tasks of cryptography is to
generate a key-exchange protocol. Both partners start
with private keys and transmit – using a public protocol
– their encrypted private keys which, after some trans-
formations, leads to a common secret key. A prototypical
protocol for the generation of a common secret key is the
Diffie-Hellman key exchange protocol [2].

All known secure key-exchange protocols use one-way
functions, which are usually based on number theory and
in particular on the difficulty in factorizing a product of
long prime numbers [2,3]. Typically, N bits – the length
of the key – are transmitted between the two partners
and transformed by an injective function to the common
key. This function usually can be inverted by a secret
trapdoor. One of the fundamental questions in the theory
of cryptography is firstly whether it is possible to build
a secure cryptosystem which does not rely on number
theory, secondly, whether one can transmit less than N
bits and thirdly, whether one can generate very long keys
which can be directly used for one-time stream ciphers
[2].

In our recent paper [4] we presented a novel principle
of a key-exchange protocol based on a new phenomenon
which we observed for artificial neural networks. The
protocol is based on the synchronization of feedforward
neural networks by mutual learning. It was shown by
simulations and by the analytical solution of the dynam-
ics that synchronization is faster than the learning of a
naive attacker that is trying to reveal the weights of one
of the parties [4,5]. Our new approach does not rely on
previous agreement on public information , and the only
secret of each one of the parties is the initial conditions
of the weights. The protocol generates permanently new
keys and can be generalized to include the scenario of
a key-exchange protocol among more than two partners

[4]. Hence, we suggest a symmetric key-exchange proto-
col over a public channel which simplifies the task of key
management. The parties exchange a finite number of

bits less than N and can generate very long keys by fast
calculations. [6]

This protocol for the given parameters in [4] (K = L =
3) was recently shown to be breakable by an ensemble
of advanced flipping attackers [1]. In such an ensemble,
there is a probability that a low percentage of the attack-
ers will find the key. Someone reading all the decrypted
messages will determine the original plaintext from the
message which has a meaning. This result raises the ques-
tion of the existence of a secure key-exchange protocol
based on the synchronization of neural networks.

In this Letter we demonstrate that the security of
our key-exchange protocol against the flipping attack in-
creases as the synchronization time increases. The mech-
anism used to vary the synchronization time is the depth
of the weights, i.e. the number of values for each com-
ponent of the synaptic weights. The main result in this
Letter is that with increasing depth the probability of
an attacker finding the key decreases exponentially with
the depth. Hence we conjecture that a key-exchange pro-
tocol exists in the limit where the synchronization time
diverges. We also present a variant of our original scheme
which includes a permutation of a fraction of the weights.

In our original scheme each party of the secure chan-
nel, A and B, is represented by a two-layered perceptron,
exemplified here by a parity machine (PM) with K hid-
den units. More precisely, the size of the input is KN
and its components are denoted by xkj , k = 1, 2, ..., K
and j = 1, ..., N . For simplicity, each input unit takes
binary values, xkj = ±1. The K binary hidden units are
denoted by y1, y2, ..., yK . Our architecture is charac-
terized by non-overlapping receptive fields (a tree), where
the weight from the jth input unit to the kth hidden unit
is denoted by wkj , and the output bit O is the product
of the state of the hidden units. The weights can take in-
teger values bounded by |L|, i.e., wkj can take the values
−L, − L + 1, ..., L.

The secret information of each of the parties is the
initial value for the 2KN weights, wA

kj and wB
kj . The

parties do not know the initial weights of the other party

1

which are used to construct the common secret key.
Each network is then trained with the output of its

partner. At each training step a new common public
input vector (xkj) is needed for both parties. For a given
input, the output is calculated in the following two steps.

In the first step, the state of the K hidden units, y
A/B
k of

the two parties, are determined from the corresponding
fields

y
A/B
k = sign[

N
∑

j=1

w
A/B
kj xkj] (1)

In the case of zero field,
∑

w
SA/B
kj xkj = 0, A/B sets the

hidden unit to 1/−1. In the next step the output OA/B is
determined by the product of the hidden units, OA/B =

ΠK
m=1y

A/B
m . The output bit of each party is transmitted

to its partner. In the event of disagreement, OA 6= OB,
the weights of the parties are updated according to the
following Hebbian learning rule [7,8]

if
(

OA/By
A/B
k > 0

)

then w
A/B
kj = w

A/B
kj + OA/B xkj

if
(

|wA/B
kj | > L

)

then w
A/B
kj = sign(w

A/B
kj) L (2)

Only weights belonging to hidden units which are in the
same state as their output unit are updated. Note that
from the knowledge of the output, the internal represen-
tation of the hidden units is not uniquely determined be-
cause there is a 2K−1 fold degeneracy. As a consequence,
an attacker cannot know which weight vectors are up-
dated according to equation (2). Nevertheless, although
parties A and B do not have more information than an
attacker, they still can synchronize.

The synchronization time is finite even in the thermo-
dynamic limit [4,5]. For K = L = 3, for instance, the
synchronization time tav converges to ≃ 400 for large
networks. This observation was recently confirmed by
an analytical solution of the presented model [5]. Sur-
prisingly, in the limit of large N one needs to exchange
only a few hundred bits to obtain agreement between 3N
components. [6,11]

An attacker eavesdropping on the channel knows the
algorithm as well as the actual mutual outputs, hence he
knows in which time steps the weights are changed. In
addition, an attacker knows the input xkj as well. How-
ever, the attacker does not know the initial conditions
of the weights of the parties and as a consequence, even
for the synchronized state, the internal representations
of the hidden units of the parties are hidden from the
attacker. As a result he does not know which are the
weights participating in the learning step. Note that for
random inputs all 2k−1 internal representations appear
with equal probability at any stage of the dynamical pro-
cess. The strategy of a naive attacker which has the same
architecture as the parties is defined as follows [4]. The

attacker tries to imitate the moves of one of the parties,
A for instance. The attacker is trained using its internal
representation, the input vector and the output bit of A,
and the training step is performed only if A moves (dis-
agreement between the parties). Note that the trained
weights of a naive attacker are only weights belonging
to hidden units that are in agreement with OA. Simula-
tions as well as analytical solution of the dynamics indi-
cate that the learning time of a naive attacker is much
longer than the synchronization time [4,5]. Hence our
key-exchange protocol is robust against a large ensemble
of naive attackers.

Recently, an efficient flipping attack was presented [1].
The strategy of a flipping attacker, C is as follows. In the
event of a disagreement between the parties, OA 6= OB

and OC = OA, the attacker moves as for the naive attack
following its internal presentation, the common input and
OA. In the case where the parties move but the attacker
does not agree with A, OA 6= OB and OC 6= OA, the
move consists of the following two steps. In the first step
the attacker flips the sign of one of its K hidden units
without altering the weights. The selected hidden unit is
K0 with the minimal absolute local field

K0 = minm(|hC
m|) (3)

where hC
m is the local field on the mth hidden units of the

attacker (see eq. (1) for the definition of the local field).
After flipping one hidden unit the new output of the at-
tacker agrees with that of A. The learning step is then
performed with the new internal presentation and with
the strategy of the naive attacker. The flipping attack
is based on the strategy that a flipping attacker devel-
ops some similarity with the parties. This similarity can
be measured by the fraction of equal weights which is
greater than 1/(2L + 1), a result for a random attacker,
or by a positive overlap between the weights of C and
A [5]. The minimal change in the weights which pre-
serves the already produced similarity with A and which
is also consistent with the current input/output relation
is most probable by changing the weights of the hidden
units with the minimal absolute local field. Simulations
as well as the analytical solution of the dynamics of the
flipping attackers [13] indicate that there is a high prob-
ability that there is a successful attacker among a few
dozen attackers. By a successful attacker we mean an
attacker with a learning time smaller than the synchro-
nization time between the parties. This attacker achieves
the same weights as for A before the synchronization pro-
cess terminates. In Fig. 1 the average synchronization
time, tav, as well as its standard deviation as a function
of L for K = 3 and N = 103 are presented. Results were
averaged over ∼ 104 different runs, where each run is
characterized by different initial conditions for the parties
and a different set of inputs. Results indicate that the
synchronization time increases as L2, for L < O(

√
N).

2

This scaling is consistent with the analytical solution of
ref [12] where for L =

√
N, tav ∝ N . For L = O(

√
N)

we observe in simulations a crossover to the scaling be-
havior tav ∝

√
NL. This crossover explains the deviation

of tav ∝ Lσ, σ = 1.91 < 2 (see Fig. 3), and furthermore
σ is expected to increase with N (see Fig. 4).

1 10
L

10
1

10
2

10
3

10
4

t
av

FIG. 1. The average synchronization time, tav, and its
standard deviations as a function of L for K = 3 and N = 103.
The regression fit for the dotted line is ∼ 50L1.91.

0 5 10 15
L

10
-3

10
-2

10
-1

10
0

P
flip

FIG. 2. The fraction of successful flipping attackers, Pflip,
as a function of L for K = 3, N = 103. The regression fit for
the dotted line is ∼ 1.4e−0.41∗L

In Figure 2 the fraction of successful flipping attackers,
Pflip, is presented as a function of L. In order to reduce
fluctuations in our simulations we define a successful at-
tacker as one which has 0.98 fraction of correct values
for the weights at the synchronization time between the
parties. Fig. 2 indicates that the success rate drops ex-
ponentially with L. To conclude, for 1 ≪ L ≪

√
N

the synchronization time diverges polynomially while the
probability of a successful attacker drops exponentially.
Hence for large L our construction is robust against the

flipping attack (Practically, for L ∼ 85 and N > 2 · 104,
the complexity of an effective flipping attack is greater
than 280).

Finally we note that the complexity of the synchroniza-
tion process for 1 ≪ L ≪

√
N is O(L2N log(N)). The

factor log(N) is a result of a typical scenario of an expo-
nential decay of the overlap in the case of discrete weights
[5]. Hence, the complexity for the generation of a large
common key, N → ∞, scales as O(log N) operations per
weight.

1 10 100
L

10
1

10
2

10
3

10
4

10
5

t
av

N=1,000
N=100,000

FIG. 3. The learning time for a perceptron as a function
of L and N = 103, 105. The regression power-law fit for
N = 103, 105 is ∼ 12L1.77, ∼ 17L1.9, respectively.

Let us compare now the complexity of an exhaustive
attack with the complexity of the flipping attack. For
each input/output pair there are 4 possible configurations
of the hidden units. Hence to cover all possible training
processes over a period t one has to deal with an ensem-
ble of 4t scenarios. The crucial question is the scaling of
the minimal necessary period t0 with L which ensures a
convergence with the weights of party A. Since one of
the attackers among 4t0 has an identical series of inter-
nal representations to party A, the problem is reduced to
calculating the weight vector of a single perceptron. The
learning time as a function of L for a perceptron attacker
K = 1 is presented in Fig. 3, indicating that for large
N , t0 ∼ L2, as expected from similar analytically solv-
able models [12]. Hence the complexity of an exhaustive
attack scales exponentially with L2 while for the flipping
attack the complexity is reduced to scale exponentially
only with L.

In the following we show that one can increase the
security of our key-exchange protocol by the following
variant of our dynamical rules. The new ingredient is
a permutation of a fraction f of the weights, and the
protocol is defined by the following steps. In the case
where the parties move, we assign for each hidden unit
a permutation consisting of F = fN pairs. Each pair

3

consists of a random selection of two indices among N of
the trained hidden unit [14]. The three permutations for
the three hidden units (which differ from step to step) are
part of the public protocol. In the case where a hidden
unit is trained we apply the assigned permutation for this
hidden unit. Note that the permutations is an ingredient
that prevents an attack where one may assign for each
weight (among 3N) a probability equal to one of the 2L+
1 possible values. During the dynamics one may try to
sharpen this probability around one of the possible values
[1]. The permutations are responsible for mixing these
probabilities as a function of time.

Results indicate that there are two different scaling
behaviors for tav(L) and Pflip(L) as a function of the
total number of permuted pairs, M , during the synchro-
nization process. As long as M < φKN where φ ∼ 1,
the permutations do not affect the synchronization time,
tav(L) = AL2; A ∼ 60 is independent of the permuta-
tions (A increases slightly with N and is asymptotically
expected to scale with log(N) [5]). This scaling behavior
can be observed for L <

√

3φN/(60f). Hence in order
to observe the scaling, tav ∼ 60L2 over a decade of L one
has to choose a large N and a very small F . In Fig. 4
the average synchronization time, tav, and its standard
deviations as a function of L are presented for K = 3,
N = 105 and F = 0, 3 (number of permuted pairs is 3 per
hidden unit). An insignificant deviation from the scaling
behavior is observed only for L ≥ 32. In the inset of Fig.
4, similar results are presented for N = 103 with F = 3,
and N = 104 with F = 3 and 20. The deviation from the
scaling behavior is observed for a larger L as we increase
N or as we decrease F (L <

√

3φN/(60f)). We also mea-
sured Pflip(L) L < 10 for N = 104, 105 with F = 3 or
F = 0. We realized that Pflip is independent of F and it
decreases exponentially with L. The permutations do not
affect the exponential drop, Pflip ∝ e−BL, where B ap-
pears to increase with N . Note that although the permu-
tations do not affect tav and Pflip, the accumulated affect
of the permutations over all the synchronization process
is significant. In the event that the flipping attacker does
not use the permutation, a dramatic drops in Pflip is ob-
served [13]. The analysis of the scaling behavior of tav

and Pflip in the second regime L >
√

3φN/(60f) is be-
yond our computational ability, where huge fluctuations
are observed.

The scaling of Pflip may be examined against other
classes of attacks including a genetic attack, a majority
attack and a flipping attack where the weights of the se-
lected hidden unit are modified to actually flip the sign
of the hidden unit [1]. Our results indicate that all such
types of attacks are less efficient than the flipping attack
presented. Hence, for all known attacks neural cryptog-
raphy is secure in the limit of large values of L.

We thank Adi Shamir for critical comments on the
manuscript.

1 10
L

10
2

10
3

10
4

10
5

t
av

1 10
L

10
2

10
3

10
4

10
5

t
av

FIG. 4. The synchronization times, tav, and their standard
deviations as a function of L for K = 3, N = 105 with F = 0
(△) and F = 3 (©). The regression fit for 2 ≤ L ≤ 25 , dotted
line, is ∼ 57.3L2.02 . Inset: tav as a function of L, N = 103,
F = 3 (dashed line), N = 104 F = 0, 3, 20 (△,©, +).

[1] A. Shamir, A. Mityagin and A. Klimov, Ramp Session,
Eurocryprt Amsterdam 2002, and a private communica-
tion.

[2] D. R. Stinson, Cryptography: Theory and Practice (CRC
Press 1995)

[3] R. L. Rivest, A. Shamir and L. Adelman, Comm. of the

ACM 21, 120 (1978).
[4] I. Kanter, W. Kinzel and E. Kanter, Europhys. Lett. 57,

141 (2002).
[5] M. Rosen-zvi, I. Kanter and W. Kinzel cond-

mat/0202350
[6] However, one should keep in mind that the two partners

do not learn the initial weights of each other, they are just
attracted to a dynamical state with opposite weights.

[7] A,. Engel and C. Van den Broeck, Statistical Mechanics

of Learning, (Cambridge Univ. Press, 2001).
[8] A stationary synchronization state of antiparallel weights

for the parties can be modified to the dynamical rules
where weights are updated only in the case of an agree-
ment between the parties. The stationary solution in this
case is parallel weights for the parties.

[9] W. Kinzel, Contribution to Networks, ed. by H.G. Schus-
ter and S. Bornholdt, to be published by Wiley VCH.

[10] I. Kanter and W. Kinzel, to appear in the Proceeding of
the XXII Solvay Conference in Physics.

[11] Note that from the synchronized weights it is difficult
to determine initial set of weights consistent with the
sequence of transmitted bits. This property may serve
for other tasks of the secure channel such a one-time pad
signature.

[12] R. Metzler, W. Kinzel and I. Kanter, Phys. Rev. E 62,
2555 (2000), and W. Kinzel, R. Metzler and I. Kanter J.
Phys. A 33 L141 (2000).

[13] M. Rosen-Zvi, E. Klein, I. Kanter and W. Kinzel (un-
published).

[14] Similar results were also obtained for global permuta-
tions, where the second index of each pair was randomly
selected from the other two hidden units.

4

http://arXiv.org/abs/cond-mat/0202350
http://arXiv.org/abs/cond-mat/0202350

