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Training a perceptron in a discrete weight space
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On-line and batch learning of a perceptron in a discrete weight space, where each weight can
take 2L+ 1 different values, are examined analytically and numerically. The learning algorithm is
based on the training of the continuous perceptron and prediction following the clipped weights. The
learning is described by a new set of order parameters, composed of the overlaps between the teacher
and the continuous/clipped students. Different scenarios are examined among them on-line learning
with discrete/continuous transfer functions and off-line Hebb learning. The generalization error of
the clipped weights decays asymptotically as exp(−Kα2)/exp(−e|λ|α) in the case of on-line learning
with binary/continuous activation functions, respectively, where α is the number of examples divided
by N, the size of the input vector and K is a positive constant that decays linearly with 1/L. For
finite N and L, a perfect agreement between the discrete student and the teacher is obtained for
α ∝

√
L ln(NL). A crossover to the generalization error ∝ 1/α, characterized continuous weights

with binary output, is obtained for synaptic depth L > O(
√
N).

I. INTRODUCTION

Neural networks and the perceptron as the simplest
prototype have become most popular as a tool for under-
standing human learning and as a basis for many various
applications [1,2]. We are interested in the perceptron
learning ability as an archetype for machines that are able
to learn. Most of the perceptrons that have been studied
until now are under two totally different constraints, two
extremes. Either the teacher weight vector is restricted
to a binary space, (the Ising teacher), or it is continuous,
confined to a hypersphere. Only a few aspects of the
learning ability of weights which are confined to have a
finite number of values have been studied, although the
realistic case on digital computers where numbers have
a finite depth representation is described by this model.
Furthermore, the applicability of neural networks to bi-
ology and to the construction of real devices requires the
understanding of the interplay between the weights depth
and the network ability of learning. Those systems are
the intermediate case, in which the weights are confined
to finite space, (2L + 1)N , when L is an integer and N
stands for the input size. [3–5].

The generalization ability of such networks, in which
the synapse has a finite depth has been analyzed by using
replica calculations and has been found to have interest-
ing nontrivial behavior of phase transition. The learn-
ing procedure composed of two phases; one in which the
learning ability is very limited, the generalization error is
finite, another phase is when the generalization error is
exactly zero, perfect learning is gained and it happens in
a finite α, where α is the number of patterns divided by
the size of the input N , [5]. Nevertheless, replica calcu-
lations do not involve practical algorithms that one may
use in order to obtain that learning behavior. In the
Ising case, for instance, although a phase transition was
predicted, no practical algorithm reproduces this discon-

tinuous behavior [6,7].
In contrast to the batch learning, when all the exam-

ples are used together to achieve perfect learning, on-
line learning is a procedure in which an update rule is
used and learning in each step utilizes only the last of
a sequence of examples. Such an algorithm drastically
reduces the computational effort compared with batch
learning and no explicit storage of a training set is re-
quired [8]. It was shown that there is no updating rule
that uses only the discrete vector for updating and results
in perfect learning [9].

In this paper we address the issue of practical learning
from a finite depth teacher. The method we introduce is
based on the clipping of a continuous perceptron. Hav-
ing an artificial continuous weight vector enables smooth
learning; clipping it results in a discrete student ~WS ,
whose components are close to those of the teacher. This
method has been used successfully in the Ising perceptron
[6,7,10,11]. The questions that arise from the procedure
above are; whether learning is possible at all and if it
is possible, does it give better results then the learning
in a continuous space. It seems very natural that if the
weights” depth is very large, i.e. there are many possi-
ble values to each weight, the learning behavior of the
discrete weights will be exactly the same as those of a
continuous weight. However, in the following we exam-
ine if and what are the scaling relations between both
properties, L and N .

Our main results are: (a) Learning in the case of finite
depth is possible by using a continuous precursor. This
result was confirmed both analytically and numerically.
(b) In the on-line learning scenario: Having a binary out-
put results in a fast decay of the generalization error and
at the large α regime it decays super-exponentially with
α, εg ∝ exp(−Kα2) where K is some constant. Hav-
ing a continuous output results in a much fast decay of
the generalization error,exp(−K1 exp(K2α)), where Ki
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are positive constants. (c) In batch Hebbian learning,
having a binary activation function, the generalization
error falls exponentially with α. (d) Perfect learning
is obtained when N is very large but finite, unlike the
continuous perceptrons performance. Quantitatively, for
a given N and L the perfect learning is achieved for
αf ∝ O(

√
L ln(LN)). (e) A crossover to the behavior

of the generalization error in the presence of continuous
weights occurs for L > o(

√
N).

The paper is organized as follows: In section II the
architectures and the dynamical rules are defined as well
as the continuous and discrete students. In section III
the order parameters are defined and the relations be-
tween the overlaps of the continuous teacher with the
discrete/continuous students are derived analytically. In
section IV, the dynamical evolution of the order param-
eters in the case of binary output is derived analytically
and confirmed by simulations. Both, on-line scenario and
Hebbian learning are examined. In section V the case of
large synaptic depth and the crossover to the continuous
weights is studied. In section VI, the perfect learning in
finite N systems is examined both analytically and nu-
merically. Section VII is devoted to analyze results in
the case of continuous output. Finally, in section VIII
results are concluded and open questions are addressed.

II. THE MODEL

A. The Architecture

We investigate a teacher-student scenario where both
nets are single-layer feed-forward. The examples are gen-
erated by the so-called teacher, which is known to be re-
stricted to a well-defined discrete set of values. We define
a synaptic depth L and a set of digital values to be as
follows [3,5],

WT
i = ± 1

L
,± 2

L
...± 1. (1)

In case that the zero value is part of the game, the pos-
sible values of the weights are

WT
i = 0,± 1

L
,± 2

L
...± 1. (2)

For the sake of simplicity, we present results in this paper
only for the including zero case (Eq. 2). It is easy to
generalize our results for the other case, (Eq. 1).

The input patterns ~ξµ are chosen at random and inde-
pendent of each other. In the following they are drawn
from a Gaussian distribution with zero mean and unit
variance. The size of the teacher, the student and the in-
put is N. For any input ~ξ the so-called teacher generates
an output, S, according to some rule

S = F (
~WT · ~ξ√
N

). (3)

In the following we will discuss both binary and contin-
uous rules. The student has in mind the rule F and the
discrete set of values that the teacher is confined to. In
addition, in an on-line learning scenario, the student is
given in each time step, µ, the input ~ξµ and the teacher’s
output Sµ, whereas in batch learning the set (~ξµ, Sµ)
µ = 1...αN is given altogether.

B. Dynamics of the Weights

A continuous precursor for the student, ~J is needed for
learning from a discrete teacher. The learning procedure,
having a continuous student, is well known. In an on-line
scenario at each step the continuous student updates its
weight vector according to some learning algorithm (f).
The generic form of the learning algorithm is

~Jµ+1 = ~Jµ +
η√
N
f(Sµ , xµJ)~ξµSµ, (4)

where η is the learning rate and xJ is the student’s local
field, xJ ≡ 1√

N
~J · ~ξ. Such a learning algorithm means

that at each learning step µ, the current weight vector
~Jµ is updated according to the new example, ~ξµ and each
example is presented only once.

In an off-line scenario, there is a set of examples ~ξµ

µ = 1...αN and they are used altogether to gain perfect
learning. There are methods in which the off-line lean-
ing is made according to a rule that defines an additive
quantity of all the examples. The Hebb learning is an
archetype of those methods,

~JHebb =

αN∑

µ=1

~ξµSµ. (5)

Such procedures were shown to end up in perfect learning
[14,15]. Since having a discrete teacher is merely a special
case, not using the knowledge that the teacher is confined
to a discrete set of values gives the well-known results; an
exponential decay in the case of continuous rule (on-line
learning [12,13]) and a power law decay in the case of
binary rule (on-line and off-line learning [14–18]).

The way to gain from the knowledge of the discrete
nature of the weights is in the center of our work, and
it is based on having in addition a discrete student ~WS

derived from the continuous one using the following clip-
ping procedure. A continuous weight is clipped to the
nearest discrete value, among the 2L + 1 possibilities.
Such a clipping procedure is the optimal one with the
lack of any prior knowledge about the weights accept
that each value appears with the same probability. We
define limit values, λl, which are arranged in increasing
order. The limit values divide the continuous region of
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the precursor weight vector components to 2L+ 1 inter-
vals, according to the number of the available values as
in Eq. 2. The clipping process is such that Ji is mapped
onto l

L for Ji ∈ (λl , λl + 1). The set of limits includes
{λ−l, λ−l−1, ...λ−1, λ0, λ1...λl+1}. It is given by the fol-
lowing mathematical rule:

WS
i =

L∑

l=−L

l

L
[θ(λl+1 − Ji)− θ(λl − Ji)] (6)

where θ is the Heavyside function.
Since the value of those limits, λl, is somewhat unclear,

we would like to exemplify it with some specific cases. In
the case of L = 1 ,Eq. 1, for instance, due to symmetry
it is obvious that the limit between -1 and 1 should be 0.
Hence, one introduces the following limits, λ−1 = −∞,
λ0 = 0, λ1 = ∞. Evaluating the mapping equation re-
sults in the well known clipping rule, W S

i = sign(Ji),
[6,10]. Finding the appropriate value for all other cases
but the Ising perceptron becomes more complicated, the
continuous space is no longer divided into two clear re-
gions and hence one has to consider carefully the value
of the limits.

In this paper we chose to nail down the general results
by focusing in the including zero case, L = 1, i.e., Wi =
0,±1. This case is known as the diluted Ising case and
some other aspects of it have been studied in references
[19–21]. It contains the simplicity of the Ising case on the
one hand and introduces a more generality concerning
digital values on the other hand. In this case, there is
only one unknown parameter, λ1, since λ2 = −λ−1 =∞,
and λ0 = −λ1.

While choosing the value of the limits, (in the last case
that means only choosing the value of λ1) one should
take into consideration the a priori knowledge about the
weights of teacher. It is clear that the limits should scale
with the student norm, since the exact set of values that
the continuous student end up with is irrelevant. The
mapping rule ensures that the digital student ends up
with the same values as those of the teacher. This will
be shown only after analyzing the new order parameters
and their dependent on the former one, as is presented
in the next chapter.

III. THE ORDER PARAMETERS

Evaluating the agreement between teacher and student
is made by calculating either the generalization error or
the order parameters. The generalization error, εg, is
calculated by taking the average of the student/teacher
disagreement over the distribution of input vectors. The
generalization error is given, in principle, by the overlaps
between the vectors, (the so-called order parameters).
However, in order to get into details one has first to de-
fine the rule, ( F in Eq. 3). This will be done in the

next sections. In the following we concentrate in intro-
ducing the complete set of order parameters and their
inter-relations.

In our case there are three vectors and hence two in-
terdependent sets of order parameters; one set concerns
the continuous overlaps,

RJ ≡
1

N
~J · ~WT ,

QJ ≡
1

N
~J · ~J,

(7)

and one set concerns the digital vector’s overlaps,

RW ≡
1

N
~WS · ~WT ,

QW ≡
1

N
~WS · ~WS .

(8)

Note that the dynamical evolution of the continuous set
of order parameters, Eq. 7, is independent of the clipped
order parameters, since the training is done only follow-
ing the continuous weights. In contrary to the train-
ing process the prediction and the generalization error
is made following the clipped student. Hence, finding
the quantitative interplay between the continuous set of
order parameters, Eq. 7, and the discrete set of order
parameters, Eq. 8, is the cornerstone for the analytical
description of the generalization ability of the student.

In this section we examine the relation between the
clipped set and the continuous one. The development of
RJ , QJ is not influenced by the clipping method. Hence,
finding out the above relation enables finding the devel-
opment of the clipped order parameters and results in a
description that gives the whole picture of the learning
process.

The teacher’s norm is determined according to the a-
priori probabilities for each discrete value. Having equal
probability and taking the thermodynamic limit results
in the norm,

T ≡ 1

N
~WT · ~WT =

1

L2nL

L∑

l=1

l2 =
1

3
+

1

3L
, (9)

where nL defined to be the number of optional values,
nL = 2L + 1. The order parameters in the clipped ma-
chines, RW and QW , as a function of those of the con-
tinuous machine, RJ and QJ , are evaluated as follow:

RW =<
1

N

∑
WT
i

l

L
[θ(λl+1 − Ji)− θ(λl − Ji)] >

QW =<
1

N

∑ l2

L2
[θ(λl+1 − Ji) − θ(λl − Ji)]2 >

(10)
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where < A > is an average over the known constraints
and the known overlaps,

< A >≡ TrWT

∫
dJiδ(J

2
i −NQJ)δ(JiW

T
i −NRJ)A

TrWT

∫
dJiδ(J2

i −NQJ)δ(JiWT
i −NRJ)

.

(11)

The validity of this average is based on the assumption
that all vectors ~J which are consistent with the con-
straints are taken with equal probability. This assump-
tion is violated in case that the updating of the contin-
uous vector itself is made according to the clipped one,
see [6,11].

The results are:

RW =
1

2L2nL

∑
ll′[erf(Φl+1,l′ ) − erf(Φl,l′ )],

QW =
1

2L2nL

∑
l2[erf(Φl+1,l′ ) − erf(Φl,l′ )],

(12)

where the summation is over all the possible values, start-
ing from l, l′ = −L, − L+ 1, ..., L and we defined

Φl,l′ ≡
λl√
QJ
− ρJ√

T

l′

L
√

2(1− ρ2
J )

), (13)

where ρJ ≡ RJ√
T
√
QJ

, ρW ≡ RW√
T
√
QW

are the geometrical

order parameters.
In the limit L → ∞ the summation in Eq. 12 can

be replaced by an integral. Calculating the integrals in
this limit results in the obvious identities, RW = RJ
and QW = QJ . Note that taking integrals instead of
summation imposes an inequality. The difference Φl,l′ −
Φl+1,l′ tends to zero as long as L >> 1/

√
1− ρ2

J , (see
Eq. 13). Hence, in the event that L is very large, learning
with the continuous student or learning with the clipped
version performs the same result as long as ρJ is smaller
then 2/L. This limit is discussed in section VI.

We exemplify the general results in the case of the di-
luted Ising perceptron. In that case we used the following
limits,

λ2 = −λ−1 =∞
λ1 = −λ0

(14)

and the teacher’s norm is T = 2/3. The mapping above
gives

RW =
1

3
[erf(A+) + erf(A−)]

QW = 1− 1

3
erf(A0) +

1

3
erf(A−) − 1

3
erf(A+)

(15)

were A± =
ρJ/
√
T±λ1/

√
QJ√

2(1−ρ2
J

)
and A0 = λ1√

2QJ (1−ρ2
J

)
.

From Eq. 15 one can verify that at the limit α → ∞
when the continuous order parameters achieve a perfect
learning, ρJ → 1, the discrete order parameters achieve
perfect learning as well, RW → 2/3, QW → 2/3 and
ρW → 1 given that the positive quantity, λ1, is smaller
than λ1 <

√
QJ/T .

In general, in order that the digital student will
gain perfect learning it is necessary that the relation√
QJ/T (l − 1) < λl <

√
QJ/T l holds for any positive

l. Note that the interpretation of the above constraint
is that in the vicinity of perfect learning the precursor
might be focused around any set of discrete symmetric
values, but not necessarily the ones that the clipped stu-
dent has.

One of the conclusions concerning λl is that the law
according which εg decays is independent of the exact
value of the limit value, λl. It depends only on the ruler
(binary/continuous), the specific strategy of learning (on-
line/off-line) and the learning algorithm one uses. In the
following we analyze all these variations.

IV. BINARY OUTPUT

A. On-line Learning

In an on-line learning scenario one can write equations
of motion that determine the development of the order
parameters as a function of α. The rate of convergence
depends on the rule, F (Eq. 3) and the learning algorithm
that one uses f (Eq. 4). Fine tunes are made by choosing
the learning rate, η.

We analyze learning procedure in the case of binary
rule,

S = sign(x), (16)

where x is the local field and the generalization error as
a function of ρ is known to be

εg =
1

π
cos−1(ρ) (17)

Although it was shown that using the “expected stabil-
ity” algorithm that maximizes the generalization gain per
example leads to an upper bound for the generalization
ability, [17], we choose to concentrate on the so-called
AdaTron or relaxation learning algorithm. This latter
algorithm for zero stability, κ = 0, performs comparably
well and unlike the “expected stability” algorithm does
not require additional computations in the student net-
work besides the updating of its weights, and the analysis
is simpler as well [8].

The convergence to perfect learning depends on the
learning rate, if it is too large perfect generalization be-
comes impossible. The transition from learnable situa-
tion to unlearnable occurs at ηc. In the following, in
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order to simplify the analysis; we choose a fixed learning
rate, η = 1, which is below ηc in all scenarios.

We update the artificial continuous weight vector, ~J .
The updating is made as in Eq. 4 according to the fol-
lowing learning rule:

Jµ+1
i = Jµi −

η√
N

(
~Jµ · ~ξµ√
N

)ξµi θ(−
~Jµ · ~ξµ√
N

Sµ) (18)

The equations for the order parameters with η = 1 are,

dρJ
dα

= −ρJ
2π

cos−1(ρJ ) +
1

π
(1− ρ2

J

2
)
√

1− ρ2
J ,

dQJ
dα

=
QJ
π

[ρJ

√
1− ρ2

J − cos−1(ρJ )].

(19)

In the limit α → ∞, one obtains a power law that de-
scribes the convergence of ρJ and QJ ,

ρJ ∼ 1− 2(
3π

4
)2 1

α2

QJ ∼ Q0(1 − π2(
3

4
)3 1

α2
)

(20)

Note: since we have a binary output unit, perfect learning
is gained as soon as the angle between the vectors goes
to zero independent of the student’s norm.

The solution of Eq. 19 only describes the development
of the continuous perceptron’s overlaps. The next step
is mapping the continuous precursor to the clipped one.
Since in the case of binary ruler the student’s norm con-
verges to some unknown value, one way of choosing λl
is simply “half the way” between the constrained values,
i.e. λ−L = λL+1 = infty and otherwise

λl =
1

L
(l − 1

2
)

√
QJ
T
. (21)

The development of the order parameter ρJ , is inde-
pendent of the norm QJ . Using a limit set that scales
with

√
QJ , Eq. 21, ends up in ρW which depends on

ρJ but does not depend on QJ . Hence, plugging into it
Eq. 20, one can find the the asymptotic behavior of the
generalization error, Eq. 17 in the limit α→ ∞

εg ∝
exp (−K(λ)α2)

α
1
2

, (22)

where K(λ) = min |λl − l
L

√
QJ/T |.

We exemplify the aforementioned discussion in the di-
luted Ising perceptron. We use the limits as in 14 and
assume λ1 = c

√
QJ/T . In that case

ρW =
erf(a+) + erf(a−)√

T
√

9− 3erf(a0)− 3erf(a+) + 3erf(a−)
, (23)

where a± = ρJ±c√
2T (1−ρ2

J
)

and a0 = c√
2T (1−ρ2

J
)
. In the limit

of large α one finds

εg ∝
exp (−bcα2)

α
1
2

, (24)

where for c ≥ 1/2 bc = c2

3π2 and otherwise bc = (1−c)2

3π2 .
One can see that choosing c = 1/2 results in a fastest
decay of the generalization error.

0 200 400 600 800 1000

α2

-4

-3.5

-3

-2.5

-2

-1.5

ln(εg)

ρT~0.92

ρT~0.97

FIG. 1. Simulation results of ln(εg) of the continuous pre-
cursor (◦) and of the clipped vector vs. α2. The clipping is
made according to the mapping in 14, where the results are
for λ1 = 0.5

√
QJ/T (5) and λ1 = 0.3

√
QJ/T (4). error

bars are smaller then symbols. Solid lines are the numer-
ical integrals (Eq. 19). ρT refers to the point at which a
transition occures between a superior performance by contin-
uous/clipped perceptron, (see text).

The analytical results are compared with simulations
on a teacher of the type of the diluted Ising perceptron
with the following parameters; λ = 0.5

√
QJ/T and λ =

0.3
√
QJ/T , see Figure 1. The initial conditions for the

continuous student weight vector are QJ(α = 0) = T =
2/3 and RJ(α = 0) = 0. The weight components were
drawn out of a Gaussian distribution. We used η = 1,
N = 3000 and each point was averaged over 50 samples.
One can see in Figure 1 that the analytical results give
by Eq. 23 and Eq. 24 are in agreement with simulations.

One can see that the super-exponentially decay is in-
dependent of the accurate value of λ. However, two im-
portant parameters do depend on the exact choice of λ.
One is the decay rate, the factor K(λ) in the large α
limit. One can see, for instance, that the optimal limit,
λ = 0.5 results in a faster decay than the limit λ = 0.3.
The second is the exact α or the exact value of ρJ at
which the clipped version gives a better result than the
continuous one. We named this value as ρT . For ρJ < ρT
the clipping lowers the overlap ρJ since the learning solu-
tion does not contain enough information about the real
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direction of the teacher, ~WT , so that clipping only leads
the solution to forget a little about the learned pattern
without bringing it closer to the exact solution. In the
other region, when ρJ > ρT , clipping becomes efficient
because the learning solution is near the exact one. The
numerical results of ρT according to the mapping, (Eq.
23), are ρT ∼ 0.92 for λ1 = 0.5

√
QJ/T and ρT ∼ 0.97

for λ1 = 0.3
√
QJ/T , see Figure 1.

B. Clipped -Hebbian Learning

Ising perceptron, diluted Ising perceptron and all the
binary units that are confined to discrete values exhibit
a phase transition [5,22,23]. This known result was hard
to achieved by a practical algorithm. One way to gain a
perfect learning is to include the information of all the
patterns simultaneously in the weights by using the Hebb
learning procedure, Eq. 5. Such a learning will end up in
a discrete student only in the limit α → ∞. The decay
of the generalization error in that case is known, since
it is exactly the same as having a continuous teacher,
εg ∝ 1/

√
α [14,15]. In such a way the knowledge of having

digital values is not used, one has a continuous student
that happens to realize, after learning, that the values
are constrained to a finite depth.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
λ

0.9

0.92

0.94

0.96

0.98

1

ρT

FIG. 2. Analytical results of ρT , as a function of the limit
(λ1) in the diluted Ising case. ρT stands for the continuous
overlap value at which below/above it, a better generalization
is achieved by the continuous/clipped perceptron.

The above mentioned procedure describes a way of us-
ing two vectors. A continuous one, which is evaluated

according to the Hebb rule and a discrete student, ob-
tained by clipping the continuous precursor according to
Eq. 6. The latter mapping results in a better generaliza-
tion error for large enough α.

We take for example the diluted Ising case. Given that
the continuous student is normalized to be the same as
the teacher one, QJ = T = 2/3, one can find the exact
point, ρT at which the clipped method results in a bet-
ter generalization. This value depends on the limit one
chooses. One can see that the limit λ1, that results in a
better generalization of the clipped version in smaller ρ,
is λ1 ∼ 0.43

√
QJ/T , see Figure 2. One might anticipate

to get as a result λ1 ∼ 0.5, that was found to optimize
the decay as α→∞. However, the above value is deter-
mined by the distribution of the continuous weights in
the beginning of the learning process, small α. In this
regime the distribution of the weights is close to a Gaus-
sian, and its tail influences the value of λ1. The analysis
above indicates that choosing α–dependent limits, λ(α)
in this specific case might perform an even better gener-
alization curve.

To conclude, the benefit from the clipping is evident
only after the Hebb solution is near the exact one, after
gaining large ρ. For optimizing the learning time, choos-
ing the limits should be done cautiously. If the aim of
the learning is to minimize the generalization error at
the very end of the procedure, after a long learning pro-
cess, than the best choice for the limit will be the “half
the way” method, Eq. 21. However, to minimize the
generalization error for a given finite α, the best value
might be around λ1 ∼ 0.425

√
QJ/T . These results sug-

gest that it is possible to optimize the generalization error
of the clipped perceptron by the choice of a dynamical
λ1 = λ1(α).

V. LARGE SYNAPTIC DEPTH

In this section we examine the crossover of the gener-
alization error in the presence of continuous weights as
we increase the synaptic depth. As long as the synaptic
depth L < O(

√
N), the generalization error still van-

ishes super-exponentially, Eq. 22, where the pre-factor
decreases with L. For L ≥ O(

√
N) the learning is charac-

terized by the features of spherical constrained learning.
A first step towards the continuous case limit is to find

out the change of the decay of the generalization error
as a function of L. We focus on the binary unit in the
on-line scenario. The analytic tractability of this model
enables a profound study of the influence of the synaptic
depth over the learning features.

In the last model the generalization decays super-
exponentionall, εg ∼ exp(−Kα2), (see Eq. 22). The
factor K depends on the limits one chooses, λl. Hence,
in order to keep on consistency, we use the abovemen-
tioned limits, (Eq. 21), in the different depths cases. We
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should emphasize at this stage that only one out of many
super-exponentionall terms that arise from the asymp-
totic expansion of all the error functions (Eq. 10), was
kept (Eq. 22). As soon as the deviations between dif-
ferent factors in the exponent are too small, one has to
integrate all the terms together instead of neglecting all
but one. Such a procedure results in a different type
of decay, a power law instead of a super-exponentionall
decay.

Analytical and simulations results of the generaliza-
tion error in varieties of synaptic depths are presented
in Figure 3. Simulations were carried out with N = 630
and each point is averaged over 100 samples. The insert
shows the estimated slope K, (Eq. 22), as a function
of the depth L. One can see that K decreases linearly
with 1/L. The deviation from the analytically predicted
interplay for large α, K ∝ 1/L, is probably due to finite
N effects.

0 20 40 60
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1.4

1.5

1.6
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√


 -
ln

(ε
g)

0.25 0.5 0.75 1
1/L
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0.02

0.04

0.06

K

FIG. 3. Simulation results of
√
−ln(εg) in the case of

L = 1, (diluted Ising) (×), L = 2 (5), L = 3 (4) and
L = 157 (©) versus α. The analytical results obtained by
the numerical integration of Eq. 19 and Eq. 23 is presented
for the ISing case (solid line). The dashed line is the analytical

curve for
√
−ln(εJg ), were εJg is the generalization error of the

continuous student. Inset: The dependece of the prefactor
K(L) on the depth L, in Eq. 22. Solid line is the least
squered fit, K = 0.06/L.

In the following we present argument supporting the
statement that the generalization performance of finite
depth machines coincide with the performance of contin-
uous machines as soon as L ∼

√
N . This scaling is found

by taking into account that: (a) The difference between
two available values is of order of 1/L. (b) The distribu-
tion of the continuous student values around the teacher’s
one is a Gaussian with a variance of

√
1− ρ2

J = 1/εJg ,

where εJg is the generalization error of the continuous
student. Having a learning procedure (in the continuous

space) in a finite dimension results in a generalization er-
ror, εJg , which is different then the analytical predictions.

The variance is of order of
√

1/N [26]. Hence, an esti-
mation to the order of the lower value that εJg gets in a

specific run will be
√

1/N . As a consequence, having a
discrete machine of depth L when

1

L
<<

√
1− ρ2

J ∼ εJg ∼
√

1

N
(25)

or L >>
√
N , gives the same results as those of contin-

uous learning. Note that Eq. 25 is consistent with the
mathematical constraint that was pointed out in section
III when we discussed the continuous limit. The simula-
tions shows indeed that in the case of L = 157 >>

√
N ,

were N = 630 the discrete vector’s performance coin-
cide with the analytical learning curve of the continuous
student.

It is worth pointing out that a similar result was found
when analyzing the possibility of learning from a dis-
crete teacher by a discrete student using a general up-
dating rule, [9]. The last analysis uses totally different
argument results in the conclusion that only when the
teacher’s depth is of order

√
N , it is possible to learn

the rule using an updating rule that depends on the dis-
crete weights, i.e. only then it behaves as if we have a
continuous machine.

VI. FINITE SYSTEMS - PERFECT LEARNING

The theoretical results presented in the previous chap-
ters exhibit the typical behavior of the generalization er-
ror and the order parameters. The main result is the
fast decay of the generalization error of the clipped per-
ceptron to zero, Eq 22. In the case of teacher and stu-
dent with continuous weights and finite N , the general-
ization error is always finite distance from zero, even in
the asymptotic stage of the learning process. In contrast
to the continuous case, the learning of a perceptron with
discrete weights and finite N is characterized by a tran-
sition to perfect learning, as was found for the Ising per-
ceptron, [11]. Performing simulations in that case results
in a perfect learning in some stage, since in the clipping
version the student knows exactly the teacher’s optional
values. Hence, the overlap becomes exactly one, ρW = 1,
and the generalization error becomes exactly zero as well,
εg = 0.

In order to give an estimation to the number of steps
needed for getting perfect learning, αf , we use the fol-
lowing approximation valid in the α→∞ regime, where
we can give an analytical approximation to the interde-
pendence of ρW and α. In addition, the minimal step
before perfect learning is well defined: ρW = 1− 2/(LN)
or εg ∼

√
1/(LN). Hence, we can find the interplay be-

tween α and N.
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FIG. 4. Simulation results of αf , the number of rescaled
steps necessary to achieve a perfect learning vs.

√
lnN . Sim-

ulations for diluted Ising perceptron, in the case of binary
output unit, with λ1 = 0.4

√
QJ/T (5), λ1 = 0.5

√
QJ/T

(4) and λ1 = 0.6
√
QJ/T (◦). Solid lines correspond to the

linear fit of least square error. Inset: Simulation results of αf
vs.
√
L lnL for N = 630, L = 2, 3, 4, 7 and the limit values

are chosen according to Eq. 21. Solid line is least squared fit.

In the binary output perceptron the generalization er-
ror falls down super-exponentially, Eq. 22. Hence, the
perfect learning is determined by

exp (−K(λ, L)α2) ∼
√

1/(LN), (26)

and since we found in the last chapter that K decays lin-
early with 1/L we can derive αf from the last equation,

αf ∼
√
L lnLN . This result indicates quantitatively that

for any chosen limit, λl, the number of learning step nec-
essary to achieve perfect learning is finite as long as N
and L are finite.

Figure 4 presents results of αf obtained in simulations
for the diluted Ising perceptron with c = 0.4, c = 0.5,
and c = 0.6, (Eq. 23, 24). Results were averaged over
M(N) training sets, were values of M(N) ranging from
5000 to 20 in accordance to N which is varied between
30 and 9000. To get results in lower dimension, N , we
averaged over a larger number of simulations, M .

One can see from the obtained values of αf(N, c) in

Figure 4, that the last quantity is indeed linear in
√

lnN .
Note that the obtained slope in Figure 4 for c = 0.4 and
c = 0.6 is the same as it is expected since bc is symmetric
around c = 1/2. In the inset, one can see that αf(L)
in the case of N = 630, indeed increases linearly with√
L lnL. As L → ∞ an infinite number of examples are

needed for perfect learning, there is a crossover to the
spherical case as was discussed in the previous chapter.

Small deviations from a straight line in Figure 4 are
expected to be a consequence of the following approxi-

mations: (a) We took as an analytical curve (Eq. 26)
only the asymptotic function which is an expansion valid
in infinite α. (b) We neglected the polynomial corrections
in Eq. 26 such as 1/

√
α. (c) We derived Eq. 26 from the

analytical calculation of ρJ (α). The latter quantity itself
is influenced by finite size effects. Extensive numerical
simulations show that the corrections are linear in 1/N
[24–26] and hence they are negligible after clipping and
getting ρW (As in Eq. 12).

As was shown in previous chapters, c = 0.5 gives the
best performance in the asymptotic learning procedure,
lower αf for all N, and it is confirmed in our simulations,
Figure 4 . In the thermodynamic limit N →∞, αf →∞
as expected.

VII. CONTINUOUS UNIT

We now study the case of continuous output percep-
trons with finite depth. As long as one uses a continuous
activation function, the generalization error decreases ex-
ponentially, (see for instance [12,13,18]). In order to learn
a rule which is defined by a finite depth vector, we used
a spherical vector for the student weight vector, ~J , and
clipped it in order to have a digital student weight vector
~WS . The updating of the spherical student weight vec-

tor is done according to the gradient descent method as
usual:

~Jµ+1 = ~Jµ − η√
N
∇ ~J ε(

~Jµ, ~ξµ) (27)

The error ε( ~Jµ, ~ξµ) measures the deviation of the stu-

dent from the teacher’s output for a particular input ~ξ.
The generalization error of a student is defined as the
averaged error

εg =<
1

2
[S( ~J, ~ξ) − S( ~WT , ~ξ)]2 >~ξ . (28)

Since the learning features of all kinds of the continu-
ous transfer functions are more or less the same, we chose
to concentrate in the “sin” activation function

S = sin(kx), (29)

The periodic activation function, sin, was found to be
learnable given that the period k is small enough [13]. In
the following we will simplify our analysis by taking k=1
and the learning rate η = 1. Since the learning curves of
the continuous version are the same as if there was a rule
defined by a continuous teacher, (having the finite depth
limitation is merely a special case of the spherical con-
straint), and the learning rate we chose is small enough
we find that perfect learning is an attractive fixed point
in both scenarios.

Linearizing the equations of motion around those fixed
points results in the following form (which holds for all
the continuous transfer functions):
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RJ = 1− c1
det V

V22 exp (γ1α) +
c2

det V
V12 exp (γ2α)

QJ = 1 +
c1

det V
V21 exp (γ1α)− c2

det V
V11 exp (γ2α)

(30)

The two eigenvalues of V , γ1, γ2, are both negative.
The constants c1, c2 are determined from the numerical
solution of the equations of motion.

In order to get a description of the discrete learning
one has to use the mapping relations as in Eq. 6. The
generalization error of the finite depth student directly
depends on the order parameters, as can be found by
taking the average over the local fields distribution, Eq.
28. The general result of this calculation at the α → ∞
regime is

εg ∼ exp (−C0e
|K|α), (31)

were K and C0 depend only on the learning rate ,η, the
limits one chose, λl and the specific activation function.
In the following we examine this result in the diluted
Ising case.
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FIG. 5. Simulation results of ρJ (4) and ρW (◦) vs. α in
the diluted Ising case. Solid lines are the numerical integrals
(Eq. 15, 32). Inset: ln(− ln(εg)) vs. α obtained in simulations
(◦) with N = 3000. Solid line is least squared linear fit, the
slope was found to be 0.33.

We performed simulations in the diluted Ising case,
when the transfer function is sin. The development of
the continuous order parameters in that case is described
by the following equations of motion,

dRJ
dα

=
1

2

[
(RJ+1)D+−2RJe

−2QJ−(RJ−1)D−
]

dQJ
dα

=
[
(RJ+QJ )D+−2QJe

−2QJ−(QJ−RJ)D−
]

+
1

8

[
2
(
e−2QJ − e−2 −E− +D+

)

+3−D4
−−2D−+

(
2E+ − e−8QJ −D4

+

)]
(32)

with D± = e−(1+QJ±2RJ)/2 and E± = e−(1+9QJ±6RJ )/2.
As α → ∞, one gets two eigenvalues, γ1 ∼ −0.30, γ2 ∼
−0.69. Using Eq. 15, rescaling RW and QW by the
teacher’s norm, 2/3, and taking the limit value, λ, to be
the one that yields the faster decay at the large α regime,
λ = 0.5

√
QJ/T . Collecting everything we have

RW ∼ 1− exp (−0.15α)

2
√
πK1

exp (−K2
1 e

0.30α)

QW ∼ 1 +
exp (−0.15α)√

πK1
exp (−K2

1e
0.30α),

(33)

where K is determined by the initial conditions. The gen-
eralization error as a function of the discrete parameters
is

εg =
1

2

[
1−d−+d+−

1

2

(
e−2QW +e−2

)]
(34)

with d± = e−(1+QW±2RW )/2. Expanding the last equa-
tion around RW → 1 and QW → 1, we obtain
that the generalization error decays very fast, εg ∼
exp (−K2

1 e
0.30α).

We ran simulations with N = 3000 and averaged over
10 samples. In Figure 5 the development of the discrete
as well as the continuous order parameters as a function
of α are presented. The solid lines are the analytical nu-
merical integrals of Eq. 32. Note, the transition in this
scenario from a poor generalization of the clipped ver-
sion comparatively to that of the continuous one, to a
situation in which the clipped version has a better per-
formance, occurs in the same ρT ∼ 0.92 as in the binary
unit. This quantity is related to the clipping rule and it
is independent of the specific transfer function one tries
to learn.

The inset of Figure 5 shows the unique decay of the
generalization error, in order to get linear line we plot-
ted ln (− ln εg) as a function of α. According to the above
analysis the slope should be 0.30 and we obtained in sim-
ulations 0.33±0.01. It is in good agreement, considering
the fact that we are dealing with an approximation which
is valid only in the α→∞ and simulations results are in
finite α. The generalization error of the clipped version
for larger α (α > 7 in our case) gives better results than
those predicted by the analysis, its values are exactly zero
due to finite size effects discussed in chapter V.

Following the same arguments used in order to find an
estimation to the number of examples needed for gaining
perfect learning, one finds that in the case of continuous
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output αf ∼ ln (lnN). It is obvious from the analytical
calculations and the simulations above that clipping a
continuous vector in order to learn a finite depth teacher
results in an extremely fast learning. The learning in
finite dimension is characterized by αf , above which one
gets perfect learning of the discrete vector. All those
unique characteristics of the discrete learning disappears
as soon as the weight depth is of order of

√
N as was

found in chapter VI.

VIII. CONCLUSIONS

In this paper, we presented an analysis of the simplest
neural network, the perceptron, that learns from exam-
ples given by another perceptron, the teacher, which is
confined to a discrete space. In fact, we used two stu-
dents, a continuous precursor and its clipped version.

We analyzed the new set of order parameters arising
from the clipping method. We discussed the issue of how
to clip and what set of limits, λl, is the best choice. We
found that it depends specifically on the kind of optimiza-
tion one imposes. We showed that after reaching some
overlap, ρT , a transition occurs and the clipped version
results in a better performance then the non-clipped one.
If one is interested in optimizing the learning in the sense
of getting a better performance as soon as possible, then
the minimizing ρT limits are the ones needed. However,
if by optimizing one tries to get the fastest decrease pos-
sible in the α → ∞ regime then the best choice is ’half
the way’, in-between the values. As we mentioned before,
it is possible to have a dynamic set of values that inter-
polates during the learning process between both values.
We left this issue out of the scope of this paper.

As one can see from the definitions in Eq. 2, it is
only natural to choose the continuous weight vector not
to be the one which is constrained to a hypersphere but
a vector which is constrained to a hypercube space. It
was shown that in the case of storing random patterns
pre-training a continuous student whose weight vectors
constrained to the volume of a hypercube results in a
better performance [7]. It remains as an open question
what is the quantitative benefit that one can gain in a
learning procedure by using the cubical constrained and
if a learning strategy could be designed which fulfills this
constraint.

We studied the case of a very large L and show a scaling
relation between L and N arises from the analysis. For
L ∼ O(

√
N) the learning curve is the one that is typical

to the continuous case. However, it should remain clear
that learning is the same as having a continuous student
unless α → ∞, ρJ → 1. In that regime the fast de-
cay that characterizes the clipped learning appears. All
digital computers actually correspond to such a situation,
where all available properties have a finite representation.
The machine is using some kind of clipping by rounding

the numbers. The differences, as predicted here, can be
significant only in the α→∞ regime or small depth. Vi-
sualizing them is usually impossible since they are smaller
than the measurements scale.
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Phys. A 24, 4907, (1991).
[25] A. Buhot, J-M. Torres Moreno M B Gordon, Phys. Rev.

E 55, 7434, (1997).
[26] P. Sollich and D. Barber, Europhys. Lett. 38, 477, (1997).

10


