
ar
X

iv
:c

on
d-

m
at

/0
00

30
51

3

M
ar

 2
00

0

Interacting Neural Networks

W. Kinzel and R. Metzler

Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg,

Germany

I. Kanter

Minerva Center and Department of Physics, Bar Ilan University, 52900 Ramat Gan, Israel

(April 14, 2002)

Abstract

Several scenarios of interacting neural networks which are trained either in

an identical or in a competitive way are solved analytically. In the case of

identical training each perceptron receives the output of its neighbour. The

symmetry of the stationary state as well as the sensitivity to the used training

algorithm are investigated. Two competitive perceptrons trained on mutually

exclusive learning aims and a perceptron which is trained on the opposite

of its own output are examined analytically. An ensemble of competitive

perceptrons is used as decision-making algorithms in a model of a closed

market (El Farol Bar problem or Minority Game); each network is trained on

the history of minority decisions. This ensemble of perceptrons relaxes to a

stationary state whose performance can be better than random.

Simple models of neural networks describe a wide variety of phenomena in neurobiology

and information theory. Neural networks are systems of elements interacting by adaptive

couplings which are trained by a set of examples. After training they function as content

addressable associative memory, as classifiers or as prediction algorithms. Using methods of

statistical physics many of these phenomena have been elucidated analytically for infinitely

1

large neural networks [1,2].

Most studies of feed-forward neural networks have concentrated on a single network learn-

ing a fixed rule, which is usually a second network, the so-called teacher. The teacher network

is presenting examples, sets of input/output data, and the student network is adapting its

weights to this set of examples. In an on-line training scenario each example is presented

only once, hence training is a dynamical process [3,4]. The teacher network may also gen-

erate a time series of output numbers [5,6], and the student learns by following the time

series. The weights of the teacher network are fixed in this scenario.

Many phenomena in biology, social and computer science may be modeled by a system

of interacting adaptive algorithms (see e.g. [7]). However, little is known about general

properties of such systems. In this paper we derive an analytic solution of a system of

interacting neural networks. Each network is a simple perceptron with an N -dimensional

weight vector. These networks receive an identical input vector, produce output bits and

learn from each other. In Section I, each network is trained by the output of its neighbour,

with a cyclic flow of information. By iterating the training step for randomly chosen input

vectors, the dynamical process relaxes to a stationary state. In the limit of N → ∞ we

describe the process by ordinary differential equations for a few order parameters, similiar

to the usual student/teacher scenario [3,8]. We identify the symmetries of the stationary

state and find phase transitions when increasing the learning rate of the training steps.

In Section II and III we study different training scenarios with two interacting perceptrons

and various learning algorithms.

In Section IV we apply the system of interacting networks to a problem of game theory

called the minority game, which is derived from the El-Farol Bar problem [9,10]. We consider

a set of agents who have to make a binary decision. Each agent wins only if he/she belongs

to the minority of all decisions. This process is iterated. Each agent has to develop an

algorithm which makes a decision according to the history of the global minority decisions.

The problem recently received a lot of attention in the context of statistical physics [11].

Here we follow a novel approach: Each agent uses a perceptron for making his/her decision,

2

and each perceptron is trained on the minority of all output bits.

I. MUTUAL LEARNING, SYMMETRIC CASE

In this section we investigate a system of interacting neural networks as follows: several

identical networks are arranged on an oriented ring. All networks receive an identical input

and produce different output according to their weight vectors. Each network is trained by

the output of its neighbour on the ring. This process is iterated until a stationary state is

reached in which the norms and angles between the weight vectors no longer change. We

are interested in the properties of this stationary state.

We consider the simplest feed-forward networks, an ensemble of K simple perceptrons,

which are represented by N -dimensional weight vectors wi (i = 1, . . . , K) and which map a

common input vector x onto binary outputs σi = sign(x ·wi). As order parameters we use

the norms wi = |wi| and the respective overlaps Rij = wi ·wj or cos(θij) = wi ·wj/wiwj.

When only two perceptrons are considered, the subscript is dropped: cos(θ) = w1·w2/w1w2.

The components of the input vector (or pattern) are Gaussian with mean 0 and variance 1,

yielding x·x = O(N).

The updates are of the form

w+
i = wi + (ηi/N)f(σi, s)sx (1)

for unnormalized weights or

w+
i =

wi + (ηi/N)f(σi, s)sx

|wi + (ηi/N)f(σi, s)sx| (2)

for normalized wi. The + denotes a quantity after one learning step, ηi is the learning

rate, s is the desired output, and f(σi, s), the so-called weight function, defines the learning

algorithm. We mostly use f = 1 (the Hebbian rule, called H from now on) and f = Θ(−σis)

(the perceptron learning rule, abbreviated P [1]), and the respective variations where the

wi are kept normalized, denoted as HN and PN respectively.

3

We derive differential equations for the order parameters in the thermodynamic limit

N → ∞ by taking the scalar product of the update rules and introducing a time variable

α = p/N , where p is the number of patterns shown so far. We use the analytic tools which

were previously developed for the teacher/student scenario [4,3]. If the order parameters

are self-averaging (see [12] for criteria of self-averaging in this context), integrating over the

distribution of patterns gives deterministic differential equations for the order parameters

as N →∞. The required averages are listed in the appendix.

A. Perceptron learning rule

We first restrict ourselves to two perceptrons that try to come to an agreement by learning

the output of the respective other perceptron.

For rule P with identical learning rates η1 = η2 = η, the update rule is

w+
1 = w1 +

η

N
x σ2Θ(−σ1 σ2);

w+
2 = w2 +

η

N
x σ1Θ(−σ1 σ2). (3)

The sum of both vectors is conserved under this rule: if a learning step takes place, it has the

same direction and absolute value, but different signs for the two vectors. This conservation

can be used to link w1 and w2 to cos(θ): assuming that w1 = w2 = w and starting from

θ0 = π/2, simple geometry gives w0/
√

2 = cos(θ/2)w. The conservation is also visible in the

differential equations that can be derived using the described formalism:

dw1

dα
= − η√

2π
(1− cos(θ)) +

η2θ

2w1π
; (4)

dw2

dα
= − η√

2π
(1− cos(θ)) +

η2θ

2w2π
; (5)

dR

dα
=

η√
2π

(1− cos(θ))(w1 + w2)− η2 θ

π
. (6)

If the right-hand side of 4 and 5 vanish, so does 6. There is a curve of fixed points of the

system given by the equation

4

w =
η√
2π

θ

1− cos(θ)
. (7)

Using the relation w = w0/(
√

2 cos(θ/2)), this can be solved numerically to give the fixed

point of cos(θ) as a function of the scaled learning rate η/w0, as shown in Fig. 1. For small

learning rates, the perceptrons come to good agreement, while large η leads to antiparallel

vectors.

Geometrically, this can be understood as follows: each learning step has a component

parallel to the plane spanned by w1 and w2, which decreases the distance between the vec-

tors, and a perpendicular component, which increases the distance (see Fig. 2). Equilibrium

is reached when a typical learning step no longer changes the angle, i.e. the vectors stay on

a cone around w1 + w2. The radius of this cone increases with growing η.

B. Perceptron learning with normalized weights

A similar calculation can be done for the perceptron learning rule with normalized weights

(PN), where the length wi of the weight vectors is set to 1 after each step. The perceptrons

move on a hypersphere of radius 1; in equilibrium, the average learning step leads back onto

that sphere before the vectors are normalized again.

We derive the following differential equation for R = cos(θ):

dR

dα
= (R + 1)



√

2

π
η(1− R) − η2 θ

π


 . (8)

Fixed points are R = 1, R = −1 and

η√
2π

θ

1− cos(θ)
= 1. (9)

It is not a coincidence that this is equivalent to (7) if w is set to 1. The fixed point of (9)

at R = 1 is repulsive; the one at R = −1 is unstable for η < 4/
√

2π
.
= 1.60. A solution of

(9) can only be found for η ≤ ηc
.
= 1.816, which corresponds to cos(θ)

.
= −0.689.

Simulations show that the system relaxes to the fixed point given by Eq. (9) for η < ηc

and jumps to R = −1 for larger η (see Fig. 3). This behaviour shows the characteristics of

a first-order phase transition.

5

Hence for small learning rates the two perceptrons relax to a state of nearly complete

agreement, θ ≈ 0. Increasing η leads to a nonzero angle between the two vectors up to

θ ≈ 133◦. At this rate the system jumps to complete disagreement, θ = 180◦.

C. Mutual learning on a ring

The mutual learning-scenario can be generalized to K perceptrons: perceptron i learns

from perceptron i + 1 if they disagree, with cyclic boundary conditions. Under rule P , the

total sum of vectors is conserved again: as many perceptrons take a step in one direction as

in the opposite.

Performing the necessary averages for the equations of motion would involve Gaussian

integrals over K − 1 correlated variables with Θ-functions – it is not clear to us whether

this can be done analytically in general cases. However, we find in simulations that the

fixed point for rule P is completely symmetric: there is only one angle θ between all pairs

of perceptrons. Assuming that relation (7) still holds, and using the conservation of
∑

wi,

one can derive

η√
2π

θ

1− cos(θ)
=

w0√
1 + (K − 1) cos(θ)

. (10)

The largest angle that the perceptrons can take is cos(θ) = −1/(K − 1), corresponding to a

K-cornered hypertetrahedron. This happens when |∑wi| is negligible w.r.t wi. Simulations

confirm that (10) holds, as can be seen in Fig. 1

Similar to the case of two networks, all perceptrons agree with each other for small

learning rate η → 0. For larger rates the system relaxes to a state of high symmetry

where all mutual angles between the K weight vectors are identical, θij = θ. Note that the

symmetry is higher than the topology of the flow of information (the ring). For high rates

η → ∞ the system relaxes to a state of maximal disagreement, i.e. the largest possible

mutual angle θ that is still compatible with a symmetric arrangement.

For rule PN , the sum of the weights is not preserved. The fixed point of the dynamics

follows the curve for two normalized weights described by Eq. (9) in a completely symmetric

6

configuration. When the hypertetrahedron angle is reached and
∑

wi vanishes, the sym-

metry is partly broken. There are now different angles to nearest neighbours, next-nearest

neighbours etc., so the angles split up into (K − 1)/2 different branches for odd K and

K/2− 1 for even K. Note that the system still has the symmetry of the ring.

With odd K, increasing η increases the angle between nearest neighbours, up to some

limit value. This angle is not the maximum nearest-neighbour angle allowed for by the

geometric constraints, but seems to decrease with increasing K.

In the case of even K, simulations show a second transition at some higher value of η,

where the vectors split into two antiparallel clusters, thus maximizing the nearest-neighbour

angle. The learning rate at which this transition typically appears during the run of the

program increases with N . The conclusion is that the antiparallel fixed point is not stable

in the N →∞ limit, but de facto stable in simulations because the self-averaging property

of the ODEs breaks down at this point.

One may ask which symmetries survive if the perceptrons are allowed to have different

individual learning rates. A close look reveals that for rule P , there is a more general con-

served quantity:
∑K
i wi/ηi. Simulations show that the angles θij again relax to a completely

symmetric configuration depending on the average η and the initial value of the new con-

served quantity, while the norms wi are proportional to the respective learning rates ηi. For

rule PN , variations in the learning rates not only lead to slightly different curves for each of

the angles with individually different ηc, they also suppress the transition to the antiparallel

state that is observed for even K.

D. Hebbian learning

The reason why P and PN lead to antiparallel orientation of the weight vectors for larger

learning rates is that they concentrate on cases where the networks disagree. Algorithms

that reinforce what both networks agree on are more successful, as can be seen for rule H

for two perceptrons.

7

The differential equations are

dwi
dα

= η

√
2

π
cos(θ) +

η2

2wi
;

dR

dα
= η

√
2

π
(w1 + w2) + η2(1− 2θ

π
). (11)

This system has no common fixed point, which means that the wi grow without bounds. The

asymptotic behaviour can be seen from the equation for cos(θ). Assuming that w1 = w2 = w,

we find

d cos(θ)

dα
=
η

w

4√
2π

(1− cos(θ)2) +
η2

w2

(
1− cos(θ)− 2θ

π

)
. (12)

By taking w ≈
√

2/πηα, the ODE leads to 1− cos(θ) ∝ α−4 for α → ∞. This means that

θ ∝ α−2.

Simulations agree with the numerical integration of Eqs. (11), with the exception of very

large α and correspondingly small θ (see Fig. 4). This is not surprising, since the α−2-decay

is an effect of patterns that are classified differently. As long as the perceptrons give the

same output on all patterns, w1 and w2 grow linearly, but the difference w1 − w2 does not

change, leading to θ ∝ α−1. This is observed in simulations for small angles, where no

patterns happened to be classified differently on the considered timescale. Mathematically,

this is related to a breakdown of the self-averaging properties of Eqs. (11) at the point θ = 0.

II. MUTUAL LEARNING, COMPETITION

In the previous section, all of the neural networks behave in the same way. Each percep-

tron tries to learn the output of its neighbour, and only the initial weight vectors are chosen

randomly and differ from each other. Now we investigate a scenario where two networks

behave differently. Network 1 is trying to simulate network 2 while 2 ist trained on the

opposite of the opinion of 1. This scenario describes a competition between two adaptive

algorithms. If 2 is completely successful, the overlap is cos(θ) = −1, and perceptron 1 always

fails in its prediction, and vice versa. A motivation from game theory can be drawn from

8

the game of penny matching, where both players make a binary decision simultaneously.

One player wins if the decisions are the same, the other if they are different.

A. Rule P

If both perceptrons use rule P for their respective learning aim, the update rules are

w+
1 = w1 + (η1/N)xσ2Θ(−σ1σ2);

w+
2 = w2 − (η2/N)xσ1Θ(σ1σ2). (13)

The corresponding differential equations for the order parameters are

dw1

dα
= − η1√

2π
(1− cos(θ)) +

η2
1

2w1

θ

π

dw2

dα
= − η2√

2π
(1 + cos(θ)) +

η2
2

2w2
(1− θ

π
);

dR

dα
=
η1w2√

2π
(1− cos(θ)) − η2w1√

2π
(1 + cos(θ)). (14)

The common fixed point for these equations is wi =
√

2πηi/4, cos(θ) = 0. This is hardly

surprising, since none of the perceptrons has a better algorithm than the other. The learning

rate only rescales the weight vectors; the ratio ηi/wi, which determines how fast the direction

of wi in weight space can change, is independent of η at the fixed point.

B. Rule H

The picture is slightly different if both perceptrons learn from every pattern they see.

The resulting differential equations are

dw1

dα
=

√
2

π
η1 cos(θ) +

η2
1

2w1

;

dw2

dα
= −

√
2

π
η2 cos(θ) +

η2
2

2w2
;

dR

dα
=

√
2

π
η1w2 −

√
2

π
η2w1 − η1η2(π − 2θ). (15)

9

The fixed point of R is reached if θ = π/2 and η1/w1 = η2/w2, i.e. the vectors are per-

pendicular and the scaled learning rates ηi/wi are the same for both perceptrons. Under

these conditions, the equations for wi can be solved: wi = ηi(α+ (wi,0/η1)2)1/2, so wi shows

the
√
α-scaling typical for random walks. Geometrically, the Hebb rule adds corrections to

the weight vector that are on average parallel to the teacher vector. Since the teacher is

moving at the same angular velocity as the student, the movement of both vectors resembles

a random walk. Again, η only sets the temporal and spatial scale.

C. Rule P vs. rule H

The result of the competition becomes more interesting when both perceptrons use differ-

ent algorithms. For example, we let perceptron 1 use rule P , while 2 uses H. The derivation

of the differential equations is again straightforward:

dw1

dα
= − η1√

2π
(1− cos(θ)) +

η2
1

2w1

θ

π
;

dw2

dα
= −

√
2

π
η2 cos(θ) +

η2
2

2w2

;

dR

dα
= −

√
2

π
η2w1 +

η1w2√
2π

(1− cos(θ)) +
η1η2θ

π
. (16)

They have a common fixed point defined by

θ
cos(θ)2

(1− cos(θ))2
=
π

4
;

w1 =
η1√
2π

θ

1− cos(θ);

w2 =

√
2π

4

η2

cos(θ)
. (17)

These equations can be solved numerically and yield cos(θ)
.
= 0.459, w1

.
= 0.806η1 and

w2
.
= 1.37η2. Although perceptron 1 makes less use of the provided information, it wins the

competition: the perceptron using rule H has a smaller η/w-ratio and is thus less flexible.

10

D. Normalized weights

By setting the weights to 1 after each learning step, a new length scale is introduced,

leading to a more complex dependence of the solution on the learning rates. For brevity, we

only give the differential equations for the different learning rules and explain some common

features. If both networks use rule PN , the ODE is

dR

dα
=

1√
2π

(η1(1− R)− η2(1 +R)) +
R√
2π

(η1(1− R) + η2(1 +R)) − R

2π
(η2

1θ + η2
2(π − θ));

(18)

for rule HN we find

dR

dα
=

√
2

π
(η2 − η1)(R2 − 1)− R

2
(η2

1 + η2
2)− η1η2(1−

2θ

π
); (19)

and if rule PN is used by perceptron 1 and HN by 2, the equation is

dR

dα
= R



√

2

π
η2R−

η2
2

2
+

η1√
2π

(1−R) − η2
1

2

θ

π




+
η1√
2π

(1−R) −
√

2

π
η2 + η1η2

θ

π
. (20)

The behaviour of the fixed point is similar in all cases (see Fig. 5):

• if, say, η2 is fixed and η1 → 0, R goes to a value R 6= −1. This is expected, since both

PN and HN only achieve finite values of R for fixed teachers.

• if both perceptrons use the same algorithm with the same learning rate, the result is

R = 0, as expected.

• if ηi →∞ for either i, R→ 0. Infinite learning rate means that in every time step the

perceptron discards all the information it previously had, replacing it with the current

±x. Theoretically, that makes it predictable for the other network; in practice, both

agents are confused. The notable exception is the case of PN vs. HN , where a

non-vanishing R results if both ηi →∞ with a finite ratio η1/η2.

11

III. CONFUSED TEACHER

For any prediction algorithm there is a bit sequence for which this algorithm fails com-

pletely, with 100% error [13]. In fact, such a sequence is easily constructed: Just take the

opposite of the predicted bit at each time step. In Ref. [13] a perceptron was used for the

prediction algorithm.

Here we do not consider bit sequences. However, it turns out that many statistical

properties of the prediction algorithm are similar when random inputs are used instead of

a window of the antipredictable bit sequence. Hence we consider the following scenario:

Preceptron 1 is trained on the negative of its own output. Perceptron 2 is trained on the

output of perceptron 1.

This is similar to the teacher/student model where the teacher weight vector performs

a random walk [8]. But here the teacher is “confused”, it does not believe its own opinion

and learns the opposite of it.

The update rule of perceptron 1 now only depends on its own output:

w+
1 = w1 − (η/N)xσ1. (21)

Geometrically speaking, the vector performs a directed random walk in which every learning

step has a negative overlap with the current vector. An equilibrium length is reached when

a typical learning step leads back onto the surface of an N -dimensional hypersphere. This

fixed point of w1 is easily calculated to be

w1 =
√

2πη/4
.
= 0.6267η, (22)

and the weight vector typically moves on the surface of a hypersphere of that radius.

A. Rule H

What happens if a second perceptron tries to follow the output of the confused teacher?

Again, the results depend entirely on the used algorithm. The simplest case, the Hebb rule,

also has a geometrical interpretation that is revealed by a look at the update rule:

12

w+
1 = w1 − (η/N)xσ1;

w+
2 = w2 + (η/N)xσ1. (23)

As in section I A, the sum of both vectors is constant, so there is a class of solutions to the

ODEs

dw1

dα
= −

√
2

π
η +

η2

2w1
;

dw2

dα
=

√
2

π
η cos(θ) +

η2

2w2
;

dR

dα
=

√
2

π
η(w1 −w2 cos(θ)) + η2 (24)

defined by w1,f =
√

2πη/4 and w2,f = −
√

2πη/(4 cos(θ)). The solution is given by the initial

condition, i.e. the initial sum |w1 +w2|. The fixed point angle can be calculated by applying

the cosine theorem to a triangle with side lengths w1,f , w2,f and |w1 + w2|; starting from

perpendicular vectors of norm w0, one finds

cos(θ) = −

1 +

16

π

(
w0

η

)2


−1/2

. (25)

Geometrically, for large learning rate η both norms become much larger than w0; the only

way to achieve this while keeping the sum constant is a large angle. For small η, w1 becomes

very small compared to the sum, and thus to w2. So the direction of w2 stays nearly

unchanged while w1 performs its random walk, leading to nearly perpendicular vectors on

average.

B. Rule P

If perceptron 2 uses rule P , the sum of the vectors is not conserved, and a simple

geometrical interpretation is not possible. However, the equations of motion can still be

solved:

dw1

dα
= −

√
2

π
η +

η2

2w1
;

13

dw2

dα
= − η√

2π
(1− cos(θ)) +

η2

2w2

θ

π
;

dR

dα
=

√
2

π
η cos(θ)− w1η√

2π
(1− c)− η2 θ

π
. (26)

The fixed point of cos(θ) is given by the solution of 4θ/π = (1 + cos(θ))2, independent from

η. The numerical solution is θ
.
= 0.777π, cos(θ) = −0.761, w2 = 0.552η (in accordance with

Ref. [13], where a special case of this problem was solved). Remarkably, the generalization

error is larger than 50% - even the “smarter” perceptron learning rule predicts the behaviour

of the confused teacher with less success than random guessing would.

C. Optimal learning rule

This raises an interesting question: is there any “reasonable” algorithm for perceptrons

that allows them to track the confused teacher? If there are algorithms that achieve a

positive overlap, one of them has to be the rule that optimizes student-teacher overlap in

each time step – the optimal weight function derived by Kinouchi and Caticha [14]:

fopt =
w2 tan(θ)√

2π
exp

[
− (x·w2)

2

2 tan(θ)2 w2
2

]
1

Φ(σ1x·w2/(w2 tan(θ)))
, (27)

where Φ(x) =
∫ x
−∞ exp(−z2/2)/

√
2πdz. If w1 is set to its fixed point for simplicity’s sake,

calculation yields the following ODEs for cos(θ) and w2:

d cos(θ)

dα
=

1

4π

sin(θ)2

cos(θ)
I − 2√

2πw1 cos(θ)
; (28)

dw2

dα
=
w2

4π
tan(θ)2 I, where (29)

I =
∫ ∞

−∞

1√
2π

exp

(
−1 + cos(θ)2

2 sin(θ)2
x2

)
1

Φ(−x cot(θ))Φ(x cot(θ))
dx. (30)

Calculating whether cos(θ) = 0 is in fact a fixed point of the confused teacher/optimal

student scenario is problematic, since the optimal weight function (27) diverges at θ = π/2.

However, the numerical solution of Eqs. (28) and (29) shows clearly that even starting from

cos(θ) = 1, the system evolves towards θ = π/2, which indeed seems to be the upper limit

for success. Simulations of the learning process again agree weel with our theory (see Fig.

6).

14

D. Rule HN

There is a way of achieving a positive overlap with the confused teacher with simple

learning rules: if the teacher perceptron is “slowed down” by keeping its weights normalized

and setting η to some small value, a student using PN or HN can track the teacher nearly

perfectly for very small learning rates. For simplicity’s sake, let us consider HN with

identical learning rates. The differential equation for R is

dR

dα
= (R+ 1)



√

2

π
(1−R)η − η2


 , (31)

the fixed points are R = −1 or R = −
√

2/πη + 1. This result is again confirmed by

simulations, as seen in Fig. 7. The fixed point goes to 1 as η → 0.

IV. PERCEPTRONS IN THE MINORITY PROBLEM

The concept of interacting neural networks can be applied to a problem that has received

much attention recently: the El Farol Bar Problem [9]. The problem was originally inspired

by a popular bar that has a limited capacity: if too many people attend, it becomes crowded,

and patrons don’t enjoy the evening. In a more special formulation, each agent out of a

population of K decides in each time step (each Saturday evening) to take one of two

alternatives (go to the bar or stay at home). Those agents who are in the minority win, the

others lose. Decisions are made independently; the only information available to agents is

the decision of the minority was in the last N time steps.

Many papers (see e.g. [11]) investigated a specific realisation of the model called the

Minority Game. In this model each agent has a small number of randomly chosen decision

tables (Boolean functions) that prescribe an action based on the previous history, and which

of the tables is used is decided according to how successful each one was in the course of the

game. It turned out that the success of the game depends on the ratio between the number

of players and the size of the history window, and general conclusions on the behaviour of

crowded markets were drawn [15,16].

15

We will discuss a different approach that yields different behaviour: Each agent i is

represented by a perceptron wi that uses the time series St = (St, St−1, . . . , St−N+1) of past

minority decisions to make a prediction on the next time step. It then learns the output of

the minority according to some learning rule.

In our approach, all of the agents are flexible in their decisions. Each agent uses an

identical adaptive algorithm which is trained by the history of the game, the only information

available to each of the agents. However, each agent uses a different randomly chosen initial

state of its network. If all weight vectors of the networks would collapse, all agents would

make the same decision, and all would lose. If all weights remained in the random initial

state, each agent would make a random guess which yields a reasonable performance of the

system. Our calculation shows that training can improve the performance of the system

compared to the random state.

Following Ref. [17], we replace the history St by a random vector x. Simulations show

that this changes the results only quantitatively, if at all.

This strategy fulfills the restrictions that the original problem posed: the agents do

not communicate except through majority decisions, and individual decisions are based on

experience (induction or learning) rather than perfect knowledge of the system (deduction).

However, since each player uses only one strategy whose parameters can be fine-tuned to

the current environment rather than a set of completely different strategies, no quenched

bias in the players’ behaviour is to be expected.

A. General notes on performance

The commonly used measure of collaboration in the minority problem is the average

standard deviation of the sum of outputs of all agents:

σ2

K
=

1

K
〈(

K∑

i=1

σi)
2〉. (32)

If each agent makes random decisions, one gets σ2/K = 1. The probability of two percep-

trons i and j giving the same output on a random pattern is 1 − θij/π. Any ensemble of

16

vectors wi can be thought of as centered around a center of mass C =
∑K
i=1 wi/K with

a norm C (for random vectors of length 1, C would be of order
√
K). The weights can

then be written as wi = gi + C, with
∑K
i=1 gi = 0. For the sake of simplicity, we will

assume a symmetrical configuration with gi = 1 and gi ·gj = −1/(K − 1) for i 6= j. (An

ensemble of randomly chosen vectors of norm 1 would give g2
i = 1− 1/K ± O(1/

√
N) and

gi ·gj = −1/K ± O(1/
√
N).)

The average overlap between different weights is now R = C2− 1/(K − 1), their average

norm wi =
√

C2 + 1. With this, Eq. (32) can be evaluated:

σ2

K
=

1

K

〈
K∑

i=1

1 +
K∑

i=1

K∑

j 6=i
sign(x·wi)sign(x·wj)

〉

x

= 1 + (K − 1)

(
1− 2

π
arccos

(
C2 − 1/(K − 1)

C2 + 1

))
. (33)

If C is set to 0 and K is large, a linear expansion of the arccos term in Eq. (33) gives

σ2
opt/K ≈ 1 − 2/π

.
= 0.363. The small anticorrelations (of order 1/K) between the vectors

suffice to change the prefactor in the standard deviation.

If C is much larger than g, there is a strong correlation between the perceptrons. Most

perceptrons will agree with the classification by the center of mass sign(x·C). As C →∞,

σ2/K saturates at K.

B. Hebbian Learning

Now each perceptron is trying to learn the decision of the minority according to rule H.

S denotes the majority decision:

w+
i = wi −

η

M
x sign(

N∑

j=1

sign(x·wj)) = wi −
η

M
xS. (34)

As the same correction is added to each weight vector, their mutual distances remain un-

changed. Only the center of mass is shifted. We now treat C as an order parameter:

C+ =
K∑

i=1

wi

N
− η

M
x s. (35)

C2+
= C2 − 2η

N
x·CS +

η2

N
. (36)

17

To average over x·CS in the thermodynamic limit, we introduce a field h = x·C and average

over x for fixed h:

x·CS = |h|sign(
K∑

i=1

sign(h)sign(x·gi + h)). (37)

The quantity sign(h)sign(x·gi+h) is a random variable with mean erf(|h|/
√

2) and variance

1− erf(|h|/
√

2)2. In a linear approximation for small |h|, we replace this by mean
√

2/π|h|

and variance 1.

For sufficiently large K, one can use the Central Limit Theorem to show that

∑K
i=1 sign(h)sign(x ·gi + h) becomes a Gaussian random variable with mean

√
2/πK|h|.

Since the terms of the sum in (37) are anticorrelated rather than independent, the variance

turns out to be (1− 2/π)K rather than K, analogously to Eq. (33). This yields

〈
sign(

K∑

i=1

sign(h) sign(x·gi + h))

〉
= erf(

√
K/(π − 2)|h|). (38)

Since h is a Gaussian variable with mean 0 and variance C2, the average over hS can now

be evaluated. We find the following differential equation for the norm of the center of mass:

dC2

dα
= − 4η√

2π

√√√√ 2K/(π − 2)

1 + 2K(π − 2)C2
C2 + η2. (39)

The fixed point of C , which can be plugged into Eq. (33) to get σ2/K(η,K), is

C =

√
π

4
η

√√√√1 +

√
1 +

16(π − 2)

πKη2
(40)

(see Figs. 8 and 9).

If C is large, the majority of perceptrons will usually make the same decision as C, which

then behaves like the single confused perceptron: C →
√

2πη/4 if Kη2 → ∞ – compare to

Eq. (22).

For small C , the majority may not coincide with sign(x ·C). In that case, the learning

step has a positive overlap with C, leading to C ∝ √η as η → 0.

The derivation given is only correct if N → ∞ and K is large. However, simulations

show very good agreement even for K = 21 and N = 100 (see Fig. 9). For a smaller number

18

of dimensions N , there is even a tendency towards smaller σ2/K. This can be understood in

the extreme case of N = 1: Each perceptron is characterized by one number; the outcome

is decided by whether the majority of numbers is smaller than 0 or larger, regardless of

the “pattern”. The learning step consists of shifting all numbers up or down by the same

amount. In the case of small η, the fixed point is characterized by (N − 1)/2 players firmly

on one side of the origin, (N−1)/2 on the other side, and one unfortunate loser who changes

sides at every step.

Interestingly, if the time series generated by the minority decisions is used as patterns, the

functions σ2(C) and C(η) are quantitatively different from those found for random patterns.

However, in the final result σ2(η) no disagreement can be noticed (see Fig. 9).

The presented Hebb algorithm may appear too simplistic and the chosen initial conditions

too artificial. It must therefore be emphasized that there are other learning algorithms that

lead to the same anticorrelated state. In particular, a variation of rule PN has proven

successful in simulations (see Fig. 10): all perceptrons that are on the minority side take a

learning step, and weights are kept normalized. The regular rule P where perceptrons on

the majority side move, however, leads to strong clustering and σ2/K ∝ K.

The absence of scaling behaviour if N > K and the fact that smaller dimensions (cor-

responding to smaller memory of the time series) even improve the results show that the

conclusions drawn from the “conventional” Minority Game do not apply to all conceivable

strategies for the Bar Problem. We think that the dependence of σ2/K on the ratio between

available strategies and players is caused by the use of quenched strategies and will not arise

in any scenario in which agents stick to one strategy which is fine-tuned by some learning

process.

The case of N = 1 implies that there are strategies that give σ2/K ∝ 1/K. We will

elaborate this point in another publication.

19

V. SUMMARY

We have investigated several scenarios of mutually interacting neural networks. Using

perceptrons with well-known on-line training algorithms in the limit of infinite system size,

we derived exact equations of motion for the dynamics of order parameters which describe

the properties of the system. In the first scenario a system of K perceptrons is placed

on a ring. All perceptrons receive the same input and each perceptron is trained by the

output of its neighbour on the ring. We have used two well-known training algorithms:

the perceptron rule which concentrates on examples where the networks disagree, and the

Hebbian rule where each example changes the weights. We find that with unnormalized

weights the system relaxes to a stationary state of high symmetry: each perceptron has the

same overlap with all others. The overlap depends on the learning rate: with increasing η

the perceptrons increase their mutual angle as much as possible.

For the perceptron learning rule with normalized weights we find phase transitions with

increasing learning rate η. For large values of η, the symmetry is broken, but the symmetry

of the ring is still conserved. For the Hebbian rule we find a different behaviour. The lengths

of the weights diverge, the mutual angles shrink to zero and the perceptrons eventually come

to perfect agreement in the limit of infinitely many training examples.

We furthermore study the behaviour of perceptrons that pursue competing learning aims

for different learning algorithms. If two perceptrons follow mutually exclusive learning aims

using the same algorithm, a draw results. If they use different rules, the outcome depends

on factors like the rescaled learning rate η/w. We find that a perceptron that learns the

opposite of its own prediction cannot be tracked by a student perceptron that learns the

positive output of the confused teacher: all rules achieve a negative overlap.

Finally an ensemble of interacting perceptrons is used to solve a model of a closed market.

Each agent uses a perceptron which is trained on the decision of the minority. Our analytic

solution shows that the system relaxes to a stationary state which yields a good performance

of the system for small learning rates η. In contrast to the minority game of Refs. [11] our

20

approach leads to identical profits for all agents in the long run. In addition, the performance

of the algorithm is insensitive to the size of the history window used for the decision.

This paper is a first step towards more complex models of interacting neural networks.

We have presented analytically accessible cases which may open the road to a general un-

derstanding of interacting adaptive systems with possible applications in biology, computer

science and economics.

VI. ACKNOWLEDGEMENT

All authors are grateful for support by the GIF. This paper also benefitted from a

seminar at the Max-Planck-Institut komplexer Systeme, Dresden. We thank Johannes Berg,

Michael Biehl, Liat Ein-Dor, Andreas Engel, Georg Reents, and Robert Urbanczik for helpful

discussions.

VII. APPENDIX

The following averages are used in our calculations to derive deterministic differential

equations from the update rules. The angled brackets denote averages over isotropically

distributed pattern vectors. In the limit N → ∞, w1 ·x and w2 ·x are correlated gaus-

sian random variables, and the averages can be calculated by integrating over their joint

probability distribution with appropriate boundaries. In many cases, simple geometrical

calculations give the same result with less effort.

〈x·w1 σ2Θ(−σ1σ2)〉 = − w1√
2π

(1− cos(θ)); (41)

〈x·x Θ(−σ1σ2)〉 = N
θ

π
; (42)

〈x·w1 σ1Θ(σ1σ2)〉 =
w1√
2π

(1 + cos(θ)); (43)

〈x·x Θ(σ1σ2)〉 = N(1− θ

π
); (44)

〈x·w1 σ1〉 =

√
2

π
w1; (45)

21

〈x·w1 σ2〉 =

√
2

π
w1 cos(θ); (46)

〈
fopt

〉
=

2w2√
2π

sin(θ)2

cos(θ)
; (47)

〈
fopt x·w2 σ1

〉
= 0; (48)

I =
∫ ∞

−∞

1√
2π

exp

(
−1 + cos(θ)2

2 sin(θ)2
x2

)
(Φ(−x cot(θ))Φ(x cot(θ)))−1 dx; (49)

〈
f2
opt

〉
=
w2

2

2π
tan(θ)2 I ; (50)

〈
fopt x·w1 σ1

〉
=
w1w2

2π

sin(θ)2

cos(θ)
I. (51)

22

REFERENCES

[1] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural Computation

(Addison-Wesley, Redwood City, 1991).

[2] M. Opper and W. Kinzel, in Models of Neural Networks III, edited by E. Domany, J.

van Hemmen, and K. Schulten (Springer Verlag, Heidelberg, 1995), Chap. Statistical

Mechanics of Generalization, pp. 151–209.

[3] On-line Learning in Neural Networks, edited by D. Saad (Cambrigde University Press,

Cambridge, 1998).

[4] M. Biehl and P. Riegler, Europhys. Lett. 28, 525 (1994).

[5] E. Eisenstein, I. Kanter, D. Kessler, and W. Kinzel, Phys. Rev. Letters 74, 6 (1995).

[6] M. Schröder and W. Kinzel, J. Phys. A 31, 9131 (1998).

[7] D. H. Wolpert and K. Turner, cs.LG/9908014 (unpublished).

[8] M. Biehl and H. Schwarze, J. Phys. A 26, 2651 (1993).

[9] W. B. Arthur, Am. Econ. Assoc. Papers and Proc 84, 406 (1994).

[10] D. Challet and Y.-C. Zhang, Physica A 246, 407 (1997).

[11] M. Marsili, D. Challet, and R. Zecchina, cond-mat/9908480 (unpublished),

D. Challet, M. Marsili, and R. Zecchina, Phys. Rev. Lett. 84, 1824 (2000),

D. Challet and Y.-C. Zhang, Physica A 256, 514 (1998),

R. Savit, R. Manuca, and R. Riolo, Phys. Rev. Lett. 82, 2203 (1999),

D. Challet and M. Marsili, Phys. Rev. E 60, R6271 (1999).

[12] G. Reents and R. Urbanczik, Phys. Rev. Lett. 80, 5445 (1998).

[13] H. Zhu and W. Kinzel, Neural Computation 10, 2219 (1998).

[14] O. Kinouchi and N. Caticha, J. Phys. A 25, 6243 (1992).

23

http://il.arXiv.org/abs/cs/9908014
http://il.arXiv.org/abs/cond-mat/9908480

[15] D. Challet, M. Marsili, and Y.-C. Zhang, cond-mat/9909265 (unpublished).

[16] N. F. Johnson, M. Hart, P. M. Hui, and D. Zheng, cond-mat/9910072 (unpublished).

[17] A. Cavagna, Phys. Rev. E 59, R3783 (1999).

24

http://il.arXiv.org/abs/cond-mat/9909265
http://il.arXiv.org/abs/cond-mat/9910072

FIGURES

0 1 2 3 4 5 6
η/w0

−1

−0.5

0

0.5

1

co
s(

θ)

2 perceptrons, simulation
3
4
5
2 perceptrons, analytical
3
4
5

−1/4
−1/3

−1/2

FIG. 1. Mutual learning with rule P (see sections I A and I C): comparison between Eqs. (7)

and (10) and the stationary state in simulations with N = 100 and α > 75.

~ x||

~ xη ⊥xη−~ ⊥

x−η~ ||

w1

η

wθ/2 2

w + w1 2

||

⊥

FIG. 2. Mutual learning with rule P : sketch of the geometrical interpretation. See section I A.

25

���

0 0.5 1 1.5 2
η

−1

−0.5

0

0.5

1

co
s(

θ)

theory
simulation

ηc

cos(θ)c

0 1 2 3 4 5
η

−1

−0.5

0

0.5

1

co
s(

θ)

1−2
1−3
1−4

0 1 2 3 4 5
η

−1

−0.5

0

0.5

1

co
s(

θ)

1−2
1−3

−1/2

0 1 2 3 4 5
η

−1

−0.5

0

0.5

1

co
s(

θ)
1−2
1−3
1−4
1−5

���

FIG. 3. Mutual learning with rule PN (cf. sections I B and I C): the system follows Eq. (9)

for η < ηc. Simulations used N = 100.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

α

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1−
co

s(
θ)

η = 1, num.
η = 10

−2
, num.

η = 10
−3

, num.
η = 1, sim.
η = 10

−2
, sim.

η = 10
−3

, sim.
slope −4
slope −2

FIG. 4. Mutual learning with rule H : simulations with N = 100 show good agreement with

Eqs. (11), except for very small angles θ.

26

0 1 2 3 4 5 6
η1

−1

−0.5

0

0.5

1
co

s(
θ)

PN, analytical
HN
PN vs. HN
PN, simulation
HN
PN vs. HN

FIG. 5. Competing learning aims with normalized weights: η2 is set to 1 while η1 is varied.

The analytical curves are fixed points of Eqs. (18), (19) and (20), respectively.

0 0.1 0.2 0.3 0.4 0.5
α

0

0.2

0.4

0.6

0.8

1

co
s(

θ)
, w

2

cos(θ), theory
simulation
w2, theory
simulation

FIG. 6. Confused teacher: Even with the optimal weight function (27) the student only achieves

an overlap of cos(θ) = 0. Starting values are w1 = w2 =
√

2π/4, cos(θ) = 1, η = 1. Simulations

are performed with N = 2000; the statistical error is smaller than the size of the symbols..

27

0 0.5 1 1.5 2
η

−1

−0.5

0

0.5

1
co

s(
θ) simulation

analytical

FIG. 7. Confused teacher: If the teacher is slowed down by normalizing its weight, it can be

tracked by a student using e.g. rule HN . The figure shows the fixed point of (31) and simulations

with N = 100.

0 0.1 0.2 0.3 0.4 0.5
η

0

0.1

0.2

0.3

C
fix

K = 21, theory
K = 21, simulation
K = 51, theory
K = 51, simulation
infinite K, theory

FIG. 8. Fixed point of C vs. η: simulations with N = 100 agree well with Eq. (40). The limit

for K →∞ is C =
√

2πη/4.

28

0 0.5 1
η

0

1

2

3

4

5

6

7
<

σ2 /K
>

K = 21, theory
K = 21, time series
K = 21, random x
K = 51, theory
K = 51, time series
K = 51, random x

random guessing

1−2/π

FIG. 9. Fixed point of σ2/K vs. η: the combination of Eqs.(33) and (40) shows that sufficiently

small learning rates lead to σ2/K < 1.

0 1 2 3
η

0

1

2

3

4

5

6

σ2 /K

K = 21, simulation
K = 51, simulation

1

1−2/π

FIG. 10. Using a modified PN algorithm improves the results, compared to Fig. 9. Simulations

again use N = 100.

29

