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Abstract

The idea that a trained network can assign a con�dence number to its pre�

diction� indicating the level of its reliability� is addressed and exempli�ed

by an analytical examination of a perceptron with discrete and continuous

output units� Results are derived for both Gibbs and Bayes scenarios� The

information gain by the con�dence number is estimated by various entropy

measurements�

PACS numbers� ����	�
e� 	���	
s� 	���	�y

Typeset using REVTEX

�



Statistical physics methods have contributed greatly to the theory of learning in recent

years� ����� Analytical methods were developed to investigate the learning of a rule from

randomized data by large neural networks� The quality of the learning is measured by the

averaged generalization error which quanti�es the average amount of disagreement between

the student	 the trained network	 and known rules�

There are basically two lines of approach in the investigation of the task of learning a rule

from random examples� In the �rst approach	 known as a batch learning	 the examples are

stored and can be provided at any given moment of the learning process� For a given training

set	 the learning trail gains from the quenched 
uctuations in the examples provided	 and

therefore the analytical treatment is based on the replica method� ��� The second line of

research concerns the physics of so�called on�line learning processes ��� and was initiated in

references �
� ��� From a practical point of view	 on�line learning is particularly attractive

since it uses only the latest example from the training set� This obviously reduces the storage

needs in comparison with memory based batch prescriptions� Furthermore	 this property

makes it possible to investigate analytically a variety of on�line learning scenarios	 where the

learning dynamics is described exactly in terms of coupled di�erential equations� ���

In both learning scenarios the major analytical activity concentrates on the study

of teacher�student networks with the same architecture and with continuous adjustable

weights� the size of the input is N and the size of the training set �number of random

examples� is de�ned by �N 	 see ��� and references therein� The generalization error	 the

average amount of disagreement between the teacher�student predictions on a new example	

was found to scale asymptotically with ��� for binary output units and to scale as e�� for

networks with continuous output units� ��	��

The traditional question in the learning theory is to �nd the learning prescription which

minimizes asymptotically the generalization error or maximizes the similarity between the

student and the teacher in the case of a realizable learning rule� In this Letter we address

and examine the following orthogonal question� A network is trained by a given learning

algorithm on a set of random examples � the training set� A new question �a new input�
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is then presented	 where it is clear that a deterministic student gives a well�de�ned answer

�an output�� A practical question one may now ask is to what extent can we rely on the

student�s answer� More precisely	 a con�dence number must be assigned to each answer to

indicate the level of its reliability� In general	 the con�dence number can take any value in

a de�nite range� However	 it is more convenient to give a probabilistic interpretation to the

con�dence number and hence the natural range is ��� ��� In such a case the reliability of the

answer is represented by the con�dence number � a probability between zero and one� The

average con�dence number is nothing else but �� �g	 where �g is the average generalization

error�

In this Letter we would like �rst to address and then to examine analytically on some lim�

ited architectures	 the following questions� ��� Can one assign for each input a di�erent con�

�dence number	 such that in some of the questions the con�dence number is greater�smaller

than the the average con�dence number	 ���g� ��� What are the parameters of the question

�input� which cause the con�dence number to be above�below the averaged one� ��� What

is the quantitative interplay between these parameters and the resulting con�dence number�

��� How does one measure qualitatively the information gain by assigning a di�erent con��

dence number for each input� And does the information gain depend on the architecture of

the network or the prescription of the learning� �
� Can the dependence of the con�dence

number on the �quality� of the input be extended to the case of continuous output units� A

similar idea was previously addressed and examined to improve the learning process� The

generalization error is reduced by rejecting examples that lie within a given neighborhood

to the decision boundary	 namely	 examples with low reliability� ���

In order to simplify the discussion	 the above�mentioned questions are addressed and

examined within the framework of a realizable learning rule	 where both teacher and student

have the same prototypical architecture � a perceptron with a binary output unit� The N

input units are fSig i � �� �� ����� N 	 and the weights of teacher and student are de�ned

respectively by fWig and fJig� The output of the teacher	 for instance	 is given by
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out � sign�
NX
i��

WiSi� ���

This architecture is extended later to a perceptron with a continuous output unit	 out �

�O�
PN

i��WiSi� where for simplicity of the discussion we choose the common activation func�

tion �O � tanh�

For a perceptron with a binary output unit and random inputs	 eq� ���	 the generalization

error of the student depends only on R � W � J�kWkkJk	 ��� and is given explicitly by

�g �
cos���R�

�
���

In a similar spirit	 one can de�ne the average generalization error for an input which induces

a local �eld hs �
P

i JiSi on the output of the student� Note that the average is over all

possible teachers obeying an overlap R with a given student� In such a case and where the

output of the student is ��	 one can �nd explicitly ��	��

�g�hs� �
�

�
erfc�RhS�

q
���� R��� ���

where erfc�x� � ��
p
�
R
�

x exp��x��� Note that the fraction of such inputs with hs in the

case of random inputs is exp��h�s����
p
�� and for a negative output of the teacher one has to

replace hs � jhsj in eq� ���� A typical result for �g and �g�h� for h � � and R � ���� ��� are

presented in Fig� �� It is clear that �g��� � ��� independent of R	 since an orthogonal input

to the weights of the student	 J 	 does not contain any information regarding the local �eld

of the teacher	 which is an unbiased Gaussian� Hence	 the sign of the output of the student

is uncorrelated with the output of the teacher� Similarly	 �g�h� is a decreasing function of

R�� ��	 since for a given input with hs and R	 the probability that the local �eld of the

teacher is ht is

P �htjhs� R� �
s

�

�����R��
exp

��ht�Rhs�
�

����R�� ���
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FIG� �� �g
hs� versus the positive �eld of the student hs� eq� 
��� for R � 	�� and 	��� The

horizontal lines are the values of the averaged generalization error� �g� eq� 
���

The center of the Gaussian	 eq� ���	 is at Rhs	 and it increases with hs and therefore the

weight of the negative tail	 the error	 decreases� Similarly	 for a given hs	 the generalization

error decreases with R since the standard deviation of the Gaussian	
p
��R�	 deceases with

R�

It is now clear that we can do better than the average con�dence number� For a student

who develops a similarity �R � �� with the teacher	 inputs with large hs with high probability

also have ht � �	 and their con�dence number is higher than the average one	 where for

hs � � the con�dence number is ���� The values of large hs and the exact con�dence

numbers as a function of hs and R are given by eqs� ��������

The quantitative measure of the information gain by using a con�dence number as a

function of hs	 �� �g�hs�	 can be deduced from a comparison between the entropy of the an�

swers �outputs� of the student which is averaged over an in�nite number of random questions

�inputs�

S��g�h�� � �
Z
�

��

s
�

��
dhe��h

������g�h�ln��g�h�� � ��� �g�h��ln��� �g�h��� �
�

and the entropy of the averaged con�dence number

S��g� � ���gln��g� � ��� �g�ln��� �g�� ���

where �g and �g�h� are given as a function of R by eqs��������� Results for S��g� and S��g�h��






as a function ofR are presented in Fig� �	 where it is clear that the two curves should coincide

at R � �� � where independent of hs� �� ��	 the con�dence number is ���� �� Clearly	 a lower

entropy indicates a better knowledge regarding the teacher�s outputs�

Although as R � � both S��g�� S��g�h�� � �	 see Fig� �	 the information gain can be

deduced from the rate of the convergence of the entropies to zero� In the inset of Fig� �	

the ratio between S��g�h���S��g� versus R is calculated numerically from eqs� �
������ It

is clear that the information gain increases with R	 and asymptotically as R � � one can

show that

S��g�h���S��g� �
�C
p
�

j log���R�j �
�C
p
�

ln���
���

where C � � R�� xlnx � �� � x�ln�� � x�dy � �����	 x � ��
erfc�y� and the last equality

is derived from the asymptotic generalization error for the Gibbs case �g � ������� ��� The

decreasing of S��g�h���S��g� with R	 is a result of the behavior of �g�h�	 eq� �
�	 indicating

that as R increases	 roughly speaking	 the inputs can be split into two classes� In the �rst

class with hs � O�
p
�� R��	 the generalization error is almost zero �� �g�	 whereas in the

second class hs � O�
p
��R�� the generalization error is close to ���� In such a developed

bimodal distribution as a function of R	 the width of the distribution of the generalization

error around the average	 �g	 increases and similarly the information gain increases�
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FIG� �� The entropy derived from eq� 
��� S
�g�� versus R 
full line�� and the entropy derived

from the distribution of the generalization error as a function of the local �elds of the student eq�


��� S
�g
h��� versus R 
dashed line�� At R � 	 both entropies are equal to ln�� Inset� The ratio

S
�g
h���S
�g� versus R�
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The above�mentioned results can apply also to the Bayes algorithm ���	 where the main

idea is to use the distribution of the splitting of the normalized version space by a new input

to y and ��y �for details see eq� �� at reference ��� and reference ����� The average entropy	

SBayes��g�	 is given again by eq� ���	 but �g � cos���
p
R��� instead of eq� ���	 and �g�y� � y

for y � ���� ��� Similarly to the Gibbs entropies	 eqs� �
�����	 one can show that

SBayes��g�y�� � ��

	

Z �
�

�
dye�

t
�

�
�������ylny � ��� y�ln��� y��

where 	 �
q
R���� R� and t is determined through the relation y � ��
erfc�t	�

p
��� One

can show now that asymptotically SBayes��g� � �p��Rln�� � R���� � ����ln����� and

SBayes��g�h�� � �C
p
��R�

p
� � �

p
�����C��� Furthermore	 asymptotically one can �nd

that SBayes��g�h���SBayes��g� � �C
p
��ln��� and

SBayes��g�y��

SGibbs��g�h��
�

SBayes��g�

SGibbs��g�
�

����

����
���

which may indicate a universal property�

It is interesting now to extend these concepts	 �g�h� and S��g�h��	 to a perceptron with

a continuous output unit which is more realistic in many learning tasks

out � �O�
NX
i��

WiSi� ���

where we concentrate on the common choice	 �O � tanh� The averaged generalization error

is de�ned by

�g �� �

�
�tanh�W � S�� tanh�J � S��� 	 ����

where � ���	 stands for the average over the input space� The generalization error can be

expressed as a function of two order parameters� R as was de�ned earlier and we assume

now that kWk � � and the additional order parameter Q � kJk measuring the length of

the weights of the student� Note that although �g��� � ��	 it does not have an interpretation

of a probability�

The main question now is to �nd a criterion for an agreement between the student and

the teacher� If we adopt a strict measure that the two networks �agree� only when their
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outputs are exactly the same	 we will �nd that the probability for such an event is zero for

any R �� �� A more practical de�nition for an agreement is that the output of the student

is not too far from that of the teacher� Following eq� ����	 a natural way to de�ne an

agreement with an error � is

�

�
�tanh�W � S�� tanh�J � S��� � � ����

where � is a given parameter which can be �xed	 for instance	 by the required resolution of

the user� From Eq� ���� one can �nd that

h�s � ht � h�s ����

with h�s � tanh���tanh�hs�
 �
p
��� The generalization error for a given hs and � is then

given by

�� �g�hs� �
�

�
�erfc�H�s �� erfc�H�

s �� ����

where H�s � �h�s �Rhs�Q
���
q
���� R��Q�� and the averaged generalization error is given

by �g � ��
p
��
R
dhse

�h�s���g�hs�� Similarly to eqs� �
�����	 one can de�ne the entropies	

S��g� and S��g�h��� Results of these two entropies as a function of R��� � �� for Q � � and

for some typical values of � are presented in Fig� �� Note that for some values of �	 the

entropy does not monotonically decrease with R	 as was found for binary output units	 a

result which requires an explanation� For learning with binary units	 the generalization error

is always � ���	 since in the worst case one can choose a random output �as for R � ���

In the case of continuous units one should distinguish between two di�erent scenarios�

In the �rst scenario	 similar to the binary case	 for a given � and R � � the student knows

with a probability � ��� the �true� answer of the teacher� Hence	 as R increases	 both

the generalization error and the entropy decreases toward zero� In the second scenario	 the

student knows at R � � with probability � ��� that his answer is �wrong�	 which is the case

where � is small enough� In such a learning process	 as R increases	 �g �rst decreases toward

��� and the entropy increases towards ln���� As R increases beyond that point	 both the
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entropy and �g decay to zero� A similar scenario holds for S��g�h�� but the value is lower

than ln����
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FIG� �� The entropies for a perceptron with a continuous output unit� S
�g�� 
eq� 
���� versus

R full lines and S
�g
h��� 
eq� 
���� versus R dashed lines�

Results for a perceptron with a continuous output unit can be developed further� Assume

that the averaged agreement	 ��	 between teacher�student is required	 for instance	 by the

user� On some inputs of the student with local �eld hs we count the answer to be correct

although the di�erence square	 �see eq� ����� between the teacher�student outputs is large	

��hs� � ��	 where on other inputs we have a more restricted criterion for a correct answer

��hs� � ��� This global constraint can be summarized for the case of random inputs by

�� �
Z
�

��

dh
exp�h

���

p
��

��h� ����

It is clear that this global constraint does not uniquely determine the function of ��h�� The

question raised now is to �nd the best criterion for an agreement� More precisely	 the best

criterion is the one which minimizes the entropy with respect to all possible distributions

of ��h�� Hence	 one has to minimize eq� �
� under the global constraint ����� A trivial

solution with zero entropy always exists� For hs����� h�� ��h� � � such that �g � � and

for hs��h���� ��h� � �� � tanh�h����� such that �g � �� However	 since we would like to

maximize the agreement between teacher�student	 ��hs� is bounded such that �g���h�� �
��� for all hs� The minimization of eq� �
� under constraint ���� was carried out by the

Monte�Carlo method� In Fig� � results for ��h� which minimizes the entropy under the
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global constraint that �� � ��
 are presented for h � �	 where ���h� � ��h�� The curve

�� � tanh�h����� represents the upper bound for ��h� which gives �g�h� � �� For small h	

��h� is chosen such that �g is almost � and increases with h� For ��h� � ��	 the entropies

obtained from eqs� ��� and �
� are S��g� � ����� and S��g�h�� � ������� These numbers

should be compared with the enhancement of the entropies after the optimization of ��h�

as presented in Fig� �� The results are S���g�� � ������ and S��g�h�� � ������	 which are

around �ve times smaller than the entropies before the optimization� For smaller values of

��	 the optimal ��h� decreases with positive h and will be discussed elsewhere�

0.0 1.0 2.0 3.0
h

0.0

0.2

0.4

0.6

0.8

1.0

∆(h)

(1+th(h))
2

  4

∆

FIG� �� The optimal �
h� versus h for �� � 	��� The dashed line� 
� 
 tanh
h������ indicates

the upper bound for �
h� where �g
h� � 	�

All the above�mentioned concepts and results can be generalized for multi�layered net�

works	 however	 the equations are more involved and will be discussed elsewhere� Neverthe�

less	 we would like to conclude with a result for a committee machine with non�overlapping

receptive �elds and with K hidden units� If the overlap between the weights of the teacher

and that of the student for each one of the hidden units is equal to R	 one can show that

SMLN��g�h���SMLN�f�gg� 
 �� � R��K������j log�� � R�j	 which indicates an enhancement

in comparison to the perceptron case�
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