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Abstract

The idea that a trained network can assign a confidence number to its pre-
diction, indicating the level of its reliability, is addressed and exemplified
by an analytical examination of a perceptron with discrete and continuous
output units. Results are derived for both Gibbs and Bayes scenarios. The
information gain by the confidence number is estimated by various entropy

measurements.
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Statistical physics methods have contributed greatly to the theory of learning in recent
years. [1-3] Analytical methods were developed to investigate the learning of a rule from
randomized data by large neural networks. The quality of the learning is measured by the
averaged generalization error which quantifies the average amount of disagreement between
the student, the trained network, and known rules.

There are basically two lines of approach in the investigation of the task of learning a rule
from random examples. In the first approach, known as a batch learning, the examples are
stored and can be provided at any given moment of the learning process. For a given training
set, the learning trail gains from the quenched fluctuations in the examples provided, and
therefore the analytical treatment is based on the replica method. [2] The second line of
research concerns the physics of so-called on-line learning processes [4] and was initiated in
references [5,6]. From a practical point of view, on-line learning is particularly attractive
since it uses only the latest example from the training set. This obviously reduces the storage
needs in comparison with memory based batch prescriptions. Furthermore, this property
makes it possible to investigate analytically a variety of on-line learning scenarios, where the
learning dynamics is described exactly in terms of coupled differential equations. [7]

In both learning scenarios the major analytical activity concentrates on the study
of teacher/student networks with the same architecture and with continuous adjustable
weights; the size of the input is N and the size of the training set (number of random
examples) is defined by aN, see [2] and references therein. The generalization error, the
average amount of disagreement between the teacher/student predictions on a new example,
was found to scale asymptotically with 1/« for binary output units and to scale as e~ for
networks with continuous output units. [1,2]

The traditional question in the learning theory is to find the learning prescription which
minimizes asymptotically the generalization error or maximizes the similarity between the
student and the teacher in the case of a realizable learning rule. In this Letter we address
and examine the following orthogonal question. A network is trained by a given learning

algorithm on a set of random examples - the training set. A new question (a new input)



is then presented, where it is clear that a deterministic student gives a well-defined answer
(an output). A practical question one may now ask is to what extent can we rely on the
student’s answer? More precisely, a confidence number must be assigned to each answer to
indicate the level of its reliability. In general, the confidence number can take any value in
a definite range. However, it is more convenient to give a probabilistic interpretation to the
confidence number and hence the natural range is [0, 1]. In such a case the reliability of the
answer is represented by the confidence number - a probability between zero and one. The
average confidence number is nothing else but 1 — ¢, where ¢, is the average generalization
error.

In this Letter we would like first to address and then to examine analytically on some lim-
ited architectures, the following questions: (1) Can one assign for each input a different con-
fidence number, such that in some of the questions the confidence number is greater /smaller
than the the average confidence number, 1 —¢,7 (2) What are the parameters of the question
(input) which cause the confidence number to be above/below the averaged one? (3) What
is the quantitative interplay between these parameters and the resulting confidence number?
(4) How does one measure qualitatively the information gain by assigning a different confi-
dence number for each input? And does the information gain depend on the architecture of
the network or the prescription of the learning? (5) Can the dependence of the confidence
number on the 'quality’ of the input be extended to the case of continuous output units? A
similar idea was previously addressed and examined to improve the learning process. The
generalization error is reduced by rejecting examples that lie within a given neighborhood
to the decision boundary, namely, examples with low reliability. [8]

In order to simplify the discussion, the above-mentioned questions are addressed and
examined within the framework of a realizable learning rule, where both teacher and student
have the same prototypical architecture - a perceptron with a binary output unit. The N
input units are {S;} i = 1, 2,...., N, and the weights of teacher and student are defined

respectively by {W;} and {J;}. The output of the teacher, for instance, is given by



out = sign[i W;Si] (1)

i=1
This architecture is extended later to a perceptron with a continuous output unit, out =
O[=N, W;S,] where for simplicity of the discussion we choose the common activation func-
tion O = tanh.

For a perceptron with a binary output unit and random inputs, eq. (1), the generalization

error of the student depends only on R =W - J/||W]||||J|], [2] and is given explicitly by

(=2 )

In a similar spirit, one can define the average generalization error for an input which induces
a local field hy = Y, J;S; on the output of the student. Note that the average is over all
possible teachers obeying an overlap R with a given student. In such a case and where the

output of the student is +1, one can find explicitly [2,8]

co(I) = serfelBhs/ /21— ) 3)

where erfe(z) = 2//7 [° exp(—2?). Note that the fraction of such inputs with hy in the
case of random inputs is exp(—h?/2)/+/27 and for a negative output of the teacher one has to
replace hy — |hs| in eq. (3). A typical result for ¢, and €,(h) for h > 0 and R = 0.6, 0.8 are
presented in Fig. 1. It is clear that €,(0) = 1/2 independent of R, since an orthogonal input
to the weights of the student, J, does not contain any information regarding the local field
of the teacher, which is an unbiased Gaussian. Hence, the sign of the output of the student
is uncorrelated with the output of the teacher. Similarly, e;(h) is a decreasing function of
R(> 0), since for a given input with h, and R, the probability that the local field of the
teacher is h; is

1 =(ht=Rhs)®

P(hlhs, R) = (i — 1) P 20-R%) (4)
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FIG. 1. €4(hs) versus the positive field of the student hy, eq. (3), for R = 0.6 and 0.8. The

horizontal lines are the values of the averaged generalization error, €4, eq. (2).

The center of the Gaussian, eq. (4), is at Rh,, and it increases with hy and therefore the
weight of the negative tail, the error, decreases. Similarly, for a given hg, the generalization
error decreases with R since the standard deviation of the Gaussian, v/1 — R2, deceases with
R.

It is now clear that we can do better than the average confidence number. For a student
who develops a similarity (R > 0) with the teacher, inputs with large hs with high probability
also have h; > 0, and their confidence number is higher than the average one, where for
hs — 0 the confidence number is 1/2. The values of large h; and the exact confidence
numbers as a function of hy and R are given by egs. (2)-(4).

The quantitative measure of the information gain by using a confidence number as a
function of hy, 1 —¢,(hs), can be deduced from a comparison between the entropy of the an-
swers (outputs) of the student which is averaged over an infinite number of random questions

(inputs)
S(eg(h)) = = /O:O \/;dhe(_fM) [eg(h)In(eg(h)) + (1 = €g(h))In(1 — €4 (h))] (5)
and the entropy of the averaged confidence number
S(eg) = —leglnleg) + (1 = €g)In(1 — €))] (6)
where €, and €,4(h) are given as a function of R by eqs.(2)-(3). Results for S(e,) and S(e,4(h))
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as a function of R are presented in Fig. 2, where it is clear that the two curves should coincide
at R = 0, 1 where independent of h(# 0), the confidence number is 1/2, 1. Clearly, a lower
entropy indicates a better knowledge regarding the teacher’s outputs.

Although as R — 1 both S(e,;), S(ey(h)) — 0, see Fig. 2, the information gain can be
deduced from the rate of the convergence of the entropies to zero. In the inset of Fig. 2,
the ratio between S(e,(h))/S(€,4) versus R is calculated numerically from egs. (5)-(6). It
is clear that the information gain increases with R, and asymptotically as R — 1 one can

show that

(e ()/S(e) = ot = )

where C' = — [ zlnz + (1 — z)in(l — x)dy ~ 0.638, x = 0.5er fc(y) and the last equality

is derived from the asymptotic generalization error for the Gibbs case €, ~ 0.62/a. [2] The
decreasing of S(e4(h))/S(e,) with R, is a result of the behavior of ¢,(h), eq. (5), indicating
that as R increases, roughly speaking, the inputs can be split into two classes. In the first
class with h, > O(v/1 — R?), the generalization error is almost zero (< ¢,), whereas in the
second class hy < O(y/1 — RZ) the generalization error is close to 1/2. In such a developed
bimodal distribution as a function of R, the width of the distribution of the generalization

error around the average, €4, increases and similarly the information gain increases.
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FIG. 2. The entropy derived from eq. (6), S(e,), versus R (full line), and the entropy derived

from the distribution of the generalization error as a function of the local fields of the student eq.
(5), S(€g(h)), versus R (dashed line). At R = 0 both entropies are equal to In2. Inset. The ratio

S(eqg(h))/S(eq) versus R.



The above-mentioned results can apply also to the Bayes algorithm [2], where the main
idea is to use the distribution of the splitting of the normalized version space by a new input
to y and 1 —y (for details see eq. 24 at reference [9] and reference [2]). The average entropy,
SBayes(€5), is given again by eq. (6), but ¢, = cos~'(v/R)/m instead of eq. (2), and ¢,(y) =y

for y < 1/2. [2] Similarly to the Gibbs entropies, egs. (5)-(6), one can show that

2 r3 . 2, o
Snaen(ea)) = == [ty E P gl + (1= g)in1 )

where v = /R/(1 — R) and t is determined through the relation y = 0.5er fc(tv/v/2). One
can show now that asymptotically Spayes(€,) = —v/1 — RIn(1 — R) /27 ~ 0.44In(a)/a and
SBayes (€,(h)) = 2C/1 — R/\/m ~ 24/70.44C/. Furthermore, asymptotically one can find
that Spayes(€4())/SBayes(€g) = 2C/7/In(a) and

SBayeS(‘fg(y)) — SBayes(Gg) _ 0.44
Saivbs (€4(h)) Scives(€4)  0.62

(8)

which may indicate a universal property.
It is interesting now to extend these concepts, €,(h) and S(e,(h)), to a perceptron with

a continuous output unit which is more realistic in many learning tasks
N
i=1

where we concentrate on the common choice, O = tanh. The averaged generalization error

is defined by
1
¢y =< tanh(W'- §) — tanh(J - S)* > (10)

where < ... > stands for the average over the input space. The generalization error can be
expressed as a function of two order parameters; R as was defined earlier and we assume
now that ||[W| = 1 and the additional order parameter () = ||.J|| measuring the length of
the weights of the student. Note that although e4€[0 : 1], it does not have an interpretation
of a probability.

The main question now is to find a criterion for an agreement between the student and

the teacher. If we adopt a strict measure that the two networks ’agree’ only when their
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outputs are exactly the same, we will find that the probability for such an event is zero for
any R # 1. A more practical definition for an agreement is that the output of the student
is not too far from that of the teacher. Following eq. (10), a natural way to define an

agreement with an error A is
1
Z[tanh(W - 8) —tanh(J - S)> < A (11)

where A is a given parameter which can be fixed, for instance, by the required resolution of

the user. From Eq. (11) one can find that
hy, <h; <h' (12)

with hF = tanh™'(tanh(h,) & 2v/A). The generalization error for a given h, and A is then

given by

L y(hs) = gler fe(H) — erfe(H) (13)

S

where HE = (hf — Rh,/Q?%)/1/2(1 — R2/Q?) and the averaged generalization error is given
by €, = 1//27 [ dhse ":/%¢,(hy). Similarly to eqs. (5)-(6), one can define the entropies,
S(ey) and S(ey(h)). Results of these two entropies as a function of Re[0 : 1] for ) =1 and
for some typical values of A are presented in Fig. 3. Note that for some values of A, the
entropy does not monotonically decrease with R, as was found for binary output units, a
result which requires an explanation. For learning with binary units, the generalization error
is always < 1/2, since in the worst case one can choose a random output (as for R = 0).

In the case of continuous units one should distinguish between two different scenarios.
In the first scenario, similar to the binary case, for a given A and R = 0 the student knows
with a probability > 1/2 the ’true’ answer of the teacher. Hence, as R increases, both
the generalization error and the entropy decreases toward zero. In the second scenario, the
student knows at R = 0 with probability > 1/2 that his answer is 'wrong’, which is the case
where A is small enough. In such a learning process, as R increases, ¢, first decreases toward

1/2 and the entropy increases towards In(2). As R increases beyond that point, both the
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entropy and €, decay to zero. A similar scenario holds for S(e,(h)) but the value is lower
than n(2).
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A=0.01

FIG. 3. The entropies for a perceptron with a continuous output unit. S(e4), (eq. (6)), versus

R full lines and S(ey4(h)), (eq. (5)), versus R dashed lines.

Results for a perceptron with a continuous output unit can be developed further. Assume
that the averaged agreement, A, between teacher/student is required, for instance, by the
user. On some inputs of the student with local field h; we count the answer to be correct
although the difference square, (see eq. (11)) between the teacher/student outputs is large,
A(hg) > A, where on other inputs we have a more restricted criterion for a correct answer

A(hg) < A. This global constraint can be summarized for the case of random inputs by
0 ~h?/2
. exp
A= [T an—
—00 vV 27

It is clear that this global constraint does not uniquely determine the function of A(h). The

A(h) (14)

question raised now is to find the best criterion for an agreement. More precisely, the best
criterion is the one which minimizes the entropy with respect to all possible distributions
of A(h). Hence, one has to minimize eq. (5) under the global constraint (14). A trivial
solution with zero entropy always exists. For hgye[—o0; hg] A(h) = 0 such that ¢, = 1 and
for hge[ho; 00] A(h) = (1 + tanh(h))?/4 such that e, = 0. However, since we would like to
maximize the agreement between teacher/student, A(hy) is bounded such that e;(A(h)) <
1/2 for all hy. The minimization of eq. (5) under constraint (14) was carried out by the

Monte-Carlo method. In Fig. 4 results for A(h) which minimizes the entropy under the
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global constraint that A = 0.5 are presented for h > 0, where A(—h) = A(h). The curve
(1 4+ tanh(h))?/4 represents the upper bound for A(h) which gives €,(h) = 0. For small h,
A(h) is chosen such that e, is almost 0 and increases with h. For A(h) = A, the entropies
obtained from eqs. (6) and (5) are S(e;) ~ 0.011 and S(e,(h)) ~ 0.0098. These numbers
should be compared with the enhancement of the entropies after the optimization of A(h)
as presented in Fig. 3. The results are S(e(g)) ~ 0.0018 and S(e,(h)) ~ 0.0017, which are
around five times smaller than the entropies before the optimization. For smaller values of

A, the optimal A(h) decreases with positive h and will be discussed elsewhere.
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FIG. 4. The optimal A(h) versus h for A = 0.5. The dashed line, (1 + tanh(h))?/4, indicates

the upper bound for A(h) where e4(h) = 0.

All the above-mentioned concepts and results can be generalized for multi-layered net-
works, however, the equations are more involved and will be discussed elsewhere. Neverthe-
less, we would like to conclude with a result for a committee machine with non-overlapping
receptive fields and with K hidden units. If the overlap between the weights of the teacher
and that of the student for each one of the hidden units is equal to R, one can show that
Surn(€g(h))/Sarrn({€,}) oc (1 — R)E=Y/2/|log(1 — R)|, which indicates an enhancement
in comparison to the perceptron case.
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