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Emergence of Chaos in Asymmetric Networks
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The dynamics of a network a¥ nonlinear elements interacting via random asymmetric weights is
studied analytically. A transition from an ordered phase to a chaotic one is obtained when the number
of relevant modes used to construct the weights exca€ds$/2 = § = 1. In the ordered phase the
dynamics of each element is characterized by an embedding dimension equal to one, or is dominated by
one Fourier component. The transition to chaos reflectinghedupled elements cannot follow more
thanN® modes encoded in the weights was confirmed numerically. [S0031-9007(96)01776-0]

PACS numbers: 87.10.+e, 05.20.—y, 05.45.+b

One of the most promising directions of statistical me-Wy 11—, Wy—m, ..., Wn,0, Wy, ..., Wn_,,.)  This net-
chanics during the last decade is its application to thevork under sequential updating can be considered also as
realm of dynamical behavior of asymmetric networks. Al-a Sequence Generator (SGen), which is a perceptron with
though asymmetric coupling is not typical of physical sys-N input units and a single continuous output [6,7]. The
tems, it appears on a macroscopic level in many biologicahput at each successive time step is chosen as follows: the
and artificial systems, such as neural networks, Markownputs from the previous time step are shifted one unit to
processes, and Turing machines. Hence, the ability to dehe right with the state of the leftmost input unit set equal
velop and extend the theoretical concepts and analyticab the state of the output unit in the previous time step
methods of statistical mechanics to include asymmetric N
couplings is essential to uncovering the generic properties S, = tan){ﬁ Z Wij+lj|, 2)
of such macroscopic systems. i=

Various asymmetric networks have been considered to

date in the literature. Of particular interest is the casé’."here for concreteness we choose:k as the activa-

of the general asymmetric random network considerearon fu_nctlon. The asymmetric network, Eg. (2), W'th the
in Refs. [1,2]. The system consists of continuous oeplitz structure, as opposed to random asymmetric net-

nonlinear variables connecting with random couplingsworks’ exhibits in the generic case under sequential up-

{J;;}. EachJ; is an independent random variable with ’Qating a very regular periodic or quasiperiodic behavior,

zero mean and variance of ordéyN. For large N mdependent'of the cor_nplexity of the ngghts. .
the system undergoes a transition from the trivial fixed The following questions naturally arise and will be at

point at zero to a chaotic state as the nonlinearity ofh?:.fofus of our d|scu53|onl. ith th bust £ h
the activation function is increased. This picture of a IrSt, We CONcern ourselves wi € robustness ot the

transition to a chaotic flow or to a phase characterized€9ular behavior of the SGen. Do quasiperiodic flows
by a fast decay of the autocorrelation function seem&pPpear only in the particular case of the Toeplitz coupling

to be the generic behavior odny unbiased random structure or they are common also to more general spatial
jycoupling matrices? This question is fundamental since the

asymmetric network, including even systems with on . ; )
y g y ydynamlcal evolution of the SGen reflects the dynamics of

weak asymmetry wherd;; is strongly correlated with inale DOF wh . q d :
Jji. (The nature of such systems in the presence of weaf SIN9'€ whose successive state depends on its own
reviousN steps, Eq. (2). This compression of a system

asymmetry but with binary variables is still in question p'th N + 1 DOF 1 indl ith a| ;

[3,4].) The existence of a nontrivial ordered phase, afo'f its d oasinge oneglvl al o_ng-herm mem;)r?]/
least at a finite gain, is possible only in the presence o ect on its dynamics Is possible only in the case of the
strong enough attractive couplings. oeplitz structure. Hence, the existence of nonchaotic

A second class of asymmetric networks is those witfflows in asymmetric networks whose dynamics are of true

spatial structure of the couplings, as opposed to randord’ gouple;l D(h)Ft IS mtrc]]uestlon. | condit " i
couplings. A prototype of such an asymmetric network tepon h'.V;’] atare ehgerggra;l Con,)' '(_)I_T]S. on the Cg.l;fp ng
consists of N + 1 degrees of freedom (DOF) with a ma ”)f[hw IC er.‘suf ct.aoﬂlc 0\?’3' IS |sfsue [I)Oe:;s
very particular structure of couplings, corresponding to grom the generic chaotic Tiow ot one (or a evv_)

. : whose dynamics has been exhaustively examined. In
Toeplitz matrix [5,6] ) S .

this case, chaos is induced by the special form of the

Jij = Wb (1) activation function as for the logistic map, or is sensitive
where D(i,j)=j—i for j—i>0 and D(i,j)=  to detailed structure of the differential equation governing
N+1+j—i for j—i<0 and J; =0. (The struc- the dynamics. In the discussed asymmetric networks, by
ture of the mth row of the matrixJ, for instance, is contrast, the dynamical evolution of each DOF is well
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behaved, and complex trajectories are a result of the lad6é]. For 8 < B. the only solution is the trivial fixed point
of a collective behavior. From previous studies it seem§} = (0. At B., this solution becomes unstable and the
that even weak asymmetry is enough to destroy an orderexystem undergoes a Hopf bifurcation to a periodic flow,
phase; hence the dynamics does not reflect the intern&gs. (5) and (6). The periodicity of the flow of the state
structure of the couplings. The interplay, if any, betweerof the N + 1 DOF isN(N + 1), since the periodicity of
the complexity of the coupling matrix and the complexity each DOF isV, Eq. (5). Hence, both the power spectrum
of the flow (chaotic, quasiperiodic, attractor dimension,of the spatial structure of the networls; i = 1,2, ...
etc.) of theN + 1 DOF case is in question, and will be and that of the temporal power spectrum of each DOF,
discussed in the second part of our work. St t =1,2,..., exhibit a dominant component at the same
Let us now examine in detail the first question, wherewave numberK. However, one should remember that
a few classes of perturbations (but not small oneskgs. (5) and (6) stand for the solution only in the leading
around the Toeplitz structure are analytically examinedorder. There are small corrections at some wave numbers
The dynamical evolution of a fully connected generalmK (m integer) and their weights are related to the
asymmetric network under sequential updating (in thepower spectrum of f2;—1(A(m))} [8]. These small higher

orderSy+1,Sn,...,S81,Sn+1...) IS given by harmonic corrections ensure that effectively on a long-
ji—1 N+1 time scale the flow of each DOF will be quasiperiodic.
St = tan{ﬁ( S TS+ > ijS,’nH):|, (3)  This effect is demonstrated in Fig. 1 whei€ ' versuss;
m=1 m=j+1 is plotted fori = 1,...,5. Note that since the corrections

where 8 is the strength of the gain and= 1,2,...,% g related to the power spectrum of a function of the
is the number_ of‘tlmes each DOF ha_s been updated [n°'§mplitudes,f(A(m)), the results,S]’- and 8., should be
that Eq. (3) withj = N + 1 andJ as in Eq. (1) reduces ggngitive to the detailed arrangement of the amplitudes.
to Eq. (2)]. The first perturbation to be examined is arpjs effect was indeed observed in networks with a small
coupling matrix of the form number of DOF but was found to be invisible for larye

Ji; = R(i)co Z—WKD(i,j) i (4) of the order of a.fevy hundreds. _

N ) These results indicate that although the network consists
whereD(i, j) stands for a spatial distance defined by theof 5 + 1 nonredundant DOF, the dynamical evolution of
Toeplitz structure [see Eq. (1)], a#tli) > 0. Foracon- each one of them is basically the same as for the SGen
stant amplitudeR (i) = R independent of, the coupling  [Eq. (2)] but with the appropriate amplitudes. The corre-
matrix has a Toeplitz structure where each element is gtions among the DOF are expressed only in the strength
pure cos of one of the possible wave numbers,> 0,  of the amplitudes an@, [see Egs. (6) and (7)].

and hence the dynamics under a sequential updating is |n the same spirit of the above discussion one can
equivalent to the SGen Eq. (2). However, for the generigeneralize the results to the case

case where the amplitudes are independent (or even one
of the amplitudes differs from the others), the dynamics, Jij = R(i)co{z—wKD(i,j) + 7T¢}, 8)
Eq. (3), is of trueN + 1 DOF. The network in this case ‘ N

cannot be compressed onto a SGen, Eq. (2), consisting of
only one DOF. The dynamical solution of Egs. (3) and
(4) is given to leading order iV by

Si ~ tanh[A(j) co{%K(j - t)“. (5)
This solution can be verified by evaluating the sum over
m in Eq. (3) and expanding; in a power series iz( j).
The constanii( j) depends o8 through the equation

A = BRI s p oy ~ BRDN7 )
2 m(#j) 2

where fi(A) is defined by tancodx)]=
Y =0 fam—1(A) (e/®m~D¥ 4 ¢=iCm=Dx) and fi =N~ X
> f1(A(m)). Note that in leading orderd(j) depends
on A(m) only throughf,. Expanding Eq. (6) for small
{A(m)} we found that the network undergoes a Hopf
bifurcation atg. given by

NI R(m) B,
1 =8 Z 3T BROM B.R(m) - Z R(m), (7)  FIG.1. Result of simulations fos!*' vs §! for Egs. (3)
m=1 ¢ m=1 and (4), with N = 101, R(i) € (0.5,1.5), B = 0.035, and
where forR(m) = O(1), B. = O(1/N) and for constant the five quasiperiodic flows are related to the first five DOF
amplitudes, the Toeplitz cas@,. = 2/NR, as expected (i =1,---,5).
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where all rows have the same phase shifb and ¢ € 1.0 10 .
[—1:1]. ForkK > 1 one can show tha] is given in the ' '
leading order ofV andK by 08 | !
27 - 0.5 1 ;:
S ~ tanr{A(j)co{W(Klj - Km)“, 9) I:i
0.6 f "
where P(K) 0'Oo.o 250 500
K1=K+(l’) KN=K+(N+1)¢) (10) 04 o
and the amplitudes an8. are given by '
o _ BNR()) sin(m )~ :
= 02 "
A = = = (11) ;
R L
C = . . 12 a4 l‘\ n
P 2. R(m) sin(m ¢) (12) 003 100 200 300
The results of Egs. (9) and (10) indicate that a phase K

shift, 7¢, in the WeighFS results in a frequency Shiﬂ- FIG. 2. Results for the temporal power spectrh for a
K, = K + ¢, of the spatial state of the network at a givensystem defined by Eq. (8) witlv = 500, K = 33, ¢ = 0.1,

time . However, the frequency shift in the weights has g8 = 0.005, and R(i) = 1 (full line), and the same system

surprisingly dramatic effect on the temporal behavior of thebut with K = 22 and random¢;, uniformly distributed in

network. The frequency shift of the temporal successivé}1e interval and (0.1, 0.3) (dashed line); see Eq. (13). Inset:
: he same as for the figure but for the spatial power spectrum,

states of each one of the DOF is proportional to sz S i=1,-N+1.

of the network,Ky = K + (N + 1)¢. Results for the

power spectrum of the spatial structure of a network and

for that of the temporal sequence of one of the DOF are

presented in Fig. 2. In the next more general case whengrototypes of different rowgK,,, ¢} m = 1,..., «, and
the power spectrum of each row consists of the same singkgach row is associated @ndomwith one types

component 2
Jl'j = R(l) CO{WKm(,')D(l',j) + W¢m(,)i| (14)

Ji = R(i)co{z—WKD(i,j) + 7r¢,} (13)
o N The second way to enhance the complexity of the weights
results are very similar to Egs. (9)—(12); see [8] for de-is to increase the complexity of each row; howeva,
tails. The only remarkable differences are thfafis re-  rows are still correlated. In this case each row is a linear

placed now by the average phage=3.; ¢;/(N + 1) and,  combination of the same components
for instance, Eq. (9) is given now by

Y o
§' ~ tanh[A( j) cos@ /N{(K + B)j L= > R(iam)CO{%KmD(i’f) * ”‘f’m(l‘)] (15)

_ m=1
‘[’”ﬁ\’* Del) + 7] For v = 1 the system reduces to the one component

andA(j) « A(j) Y, codim(¢; — ¢)]. The power spec- case, Eq. (13), where foy = N and ¢, € [—1 :
trum of both the spatial and the temporal evolution of onel], correlations among rows are absent and the system
of the DOF for the cas&/ = 500 and¢; a random num- is equivalent to a random asymmetric network (the
ber uniform in the interval0.1 : 0.3] is given in Fig. 2. amplitudes should follow a Rayleigh distribution).
Note that in case thap; is distributed homogeneously in  For finite @ in the first direction, Eq. (14), the solu-
between[—1 : 1], A = 0, the result obtained for (13) is tion is very similar to that of Eq. (9), but each DOF fol-
no longer valid and a broadened power spectrum was ollews the properties of its own rowk; = K,,(j) + ém()),
served in simulations [8]. Hence we can conclude #sat Ky = K,,j) + (N + 1)¢,j) and g in Eq. (12) should
long as rows are somewhat correlated the dynamic of thde rescaled by /«, since this is the fraction of rows as-
N + 1 DOF is coherent and is reflected by averaged fea-sociated with each row’s prototype. Hence, different be-
tures likekK and ¢. havior for the spatial and the temporal power spectrum of

Let us now turn to examine the interplay, if any, DOF associated with different prototypes is obtained. Re-
between the complexity of the weights and the complexitysults of simulations withe = 2 are presented in Fig. 3.
of the trajectories, where the above discussion hints thakhe attractor dimension of each DOF is one (or dominated
the complexity is related to the correlations among rowsdy one Fourier component), but the attractor dimension of
of the weights. There aréwo independent way$o the whole network is expected to be since there are
enhance the complexity of the matdx In the first, rows independent modes (generically and¢; are incommen-
are decorrelated but each row is still associated with onlgurate). Asxy increases, the average number of rows asso-
one Fourier component. In particular, one can define ciated with each prototype decreasesvas. Hence, the
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signal to a solution of the type of Eq. (9)A&/«, the num- amplitude of the corrections for each one of the other
ber of coherent DOF. The rest of the DO¥(1 — 1/«a), vy — 1 components is related to the Fourier spectrum
are uncorrelated with this solution (associated with otheof {f,;—1(A(m))} [8] which is typically of O(1/+/N).
components of the power spectrum) and result in an effednserting these corrections into the dynamical evolution of
tive noise of widthy/N(1 — 1/a) = O(~/N) on the em- the system, Eq. (3), one can find that the signal to noise
bedding field of Eq. (3). Hence, the signal to noise ratioratio isN'/2/y and is equal to one whep = O(+/N).
becomes0 (1) for Finally, these two independent ways of increasing
N ~ the complexity of the weights, Egs. (14) and (15), can
N “ .O(JN) _ (16) be combined. In this case there age prototypes of
and a transition to a disordered flow, which may berows where each prototype is a linear combinationyof
defined as a chaotic ﬂOW, is eXpeCted. This behaViObomponentS of the power Spectrum_ Dynamica”y, up to
was indeed observed in simulations on systems Wit some complexity measure of the weights the dynamical
1000. For @ > O(+/N), a solution of type (9) becomes eyolution of each degree of freedom is expected to be
unstable and was replaced by a broadened power spectrignasiperiodic (or dominated by one Fourier component).
CharacteriZing the temporal evolution of each DOF (WlthA” rows be|0nging to one prototype follow the same one
lack of correlations among different DOF); see [8] for of its y components as discussed above. An upper bound
details. for the complexity of a matrid with ordered dynamics is
These results indicat_e that one has to distinguish begiven bya X y = O(N), where by complexity we mean
tween tth(itautocorrelatlon function of each D@F = 4 x y—the number of independent modes constructing
211 8iS7 ! /1, and the averaged autocorrelation functionthe matrix. This upper bound is deduced from the above-
cz, =X €T /(N +1). While €7 is characterized by mentioned results that,y = N'/2. A better bound
one dominated component in the power spectrum up tean be obtained by the extension of the above signal
a=0(/N), C], decays exponentially to zero even for to noise arguments resulting i X y = O(N) for
finite @, sinceCy, is a combination ofx quasiperiodic  the combined case [8]. The bound or the exact value
functions. may be located by large scale simulations. Nevertheless,
Simulations for the second direction to enhance thene can conclude that the transition to chaotic behavior
complexity of the weights, Eq. (15), indicate that up toindicates the following general ruley coupled DOF
y = O(v/N) all DOF follow the same one component, cannot follow more thatv® 1/2 = & =< 1 “instructions”
among they possibilities, of the power spectrum and the or different modes reflecting the structure of the weights
solution is as for Eq. (13). For a greatgr a broadened This interplay between the complexity of the weights
power spectrum was observed [8]. This upper boundnd the dynamical behavior of the system explains in a
for the complexity of the rows can be explained bynatural way the emergence of chaos in a large assembly
the corrections for the solution of type Eq. (9). Theof well-behaved coupled DOF. A similar interplay was
recently found to be common also to static properties of
Hamiltonian systems [9].
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