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Emergence of Chaos in Asymmetric Networks

I. Kanter
Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

(Received 1 April 1996)

The dynamics of a network ofN nonlinear elements interacting via random asymmetric weight
studied analytically. A transition from an ordered phase to a chaotic one is obtained when the n
of relevant modes used to construct the weights exceedsNd 1y2 # d # 1. In the ordered phase th
dynamics of each element is characterized by an embedding dimension equal to one, or is domin
one Fourier component. The transition to chaos reflecting thatN coupled elements cannot follow mor
thanNd modes encoded in the weights was confirmed numerically. [S0031-9007(96)01776-0]

PACS numbers: 87.10.+e, 05.20.–y, 05.45.+b
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One of the most promising directions of statistical m
chanics during the last decade is its application to
realm of dynamical behavior of asymmetric networks. A
though asymmetric coupling is not typical of physical sy
tems, it appears on a macroscopic level in many biolog
and artificial systems, such as neural networks, Mar
processes, and Turing machines. Hence, the ability to
velop and extend the theoretical concepts and analy
methods of statistical mechanics to include asymme
couplings is essential to uncovering the generic proper
of such macroscopic systems.

Various asymmetric networks have been considere
date in the literature. Of particular interest is the ca
of the general asymmetric random network conside
in Refs. [1,2]. The system consists ofN continuous
nonlinear variables connecting with random couplin
hJijj. EachJij is an independent random variable wi
zero mean and variance of order1yN . For large N
the system undergoes a transition from the trivial fix
point at zero to a chaotic state as the nonlinearity
the activation function is increased. This picture of
transition to a chaotic flow or to a phase characteriz
by a fast decay of the autocorrelation function see
to be the generic behavior ofany unbiased random
asymmetric network, including even systems with on
weak asymmetry whereJij is strongly correlated with
Jji . (The nature of such systems in the presence of w
asymmetry but with binary variables is still in questio
[3,4].) The existence of a nontrivial ordered phase,
least at a finite gain, is possible only in the presence
strong enough attractive couplings.

A second class of asymmetric networks is those w
spatial structure of the couplings, as opposed to rand
couplings. A prototype of such an asymmetric netwo
consists ofN 1 1 degrees of freedom (DOF) with
very particular structure of couplings, corresponding to
Toeplitz matrix [5,6]

Jij ­ WDsi,jd , (1)

where Dsi, jd ­ j 2 i for j 2 i . 0 and Dsi, jd ­
N 1 1 1 j 2 i for j 2 i , 0 and Jii ­ 0. (The struc-
ture of the mth row of the matrix J, for instance, is
0031-9007y96y77(23)y4844(4)$10.00
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WN112m, WN2m, . . . , WN , 0, W1, . . . , WN2m.) This net-
work under sequential updating can be considered als
a Sequence Generator (SGen), which is a perceptron
N input units and a single continuous output [6,7]. T
input at each successive time step is chosen as follows
inputs from the previous time step are shifted one uni
the right with the state of the leftmost input unit set equ
to the state of the output unit in the previous time step

Sl ­ tanh

"
b

NX
j­1

WjSj1l

#
, (2)

where for concreteness we choosetanh as the activa-
tion function. The asymmetric network, Eq. (2), with th
Toeplitz structure, as opposed to random asymmetric
works, exhibits in the generic case under sequential
dating a very regular periodic or quasiperiodic behav
independent of the complexity of the weights.

The following questions naturally arise and will be
the focus of our discussion.

First, we concern ourselves with the robustness of
regular behavior of the SGen. Do quasiperiodic flo
appear only in the particular case of the Toeplitz coupl
structure or they are common also to more general sp
coupling matrices? This question is fundamental since
dynamical evolution of the SGen reflects the dynamics
a single DOF whose successive state depends on its
previousN steps, Eq. (2). This compression of a syste
with N 1 1 DOF to a single one with a long-term memo
effect on its dynamics is possible only in the case of
Toeplitz structure. Hence, the existence of noncha
flows in asymmetric networks whose dynamics are of t
N coupled DOF is in question.

Second, what are the general conditions on the coup
matrix which ensure chaotic flows? This issue diffe
from the generic chaotic flow of one (or a few) DO
whose dynamics has been exhaustively examined.
this case, chaos is induced by the special form of
activation function as for the logistic map, or is sensiti
to detailed structure of the differential equation govern
the dynamics. In the discussed asymmetric networks
contrast, the dynamical evolution of each DOF is w
© 1996 The American Physical Society
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behaved, and complex trajectories are a result of the
of a collective behavior. From previous studies it see
that even weak asymmetry is enough to destroy an ord
phase; hence the dynamics does not reflect the inte
structure of the couplings. The interplay, if any, betwe
the complexity of the coupling matrix and the complex
of the flow (chaotic, quasiperiodic, attractor dimensio
etc.) of theN 1 1 DOF case is in question, and will b
discussed in the second part of our work.

Let us now examine in detail the first question, whe
a few classes of perturbations (but not small on
around the Toeplitz structure are analytically examin
The dynamical evolution of a fully connected gene
asymmetric network under sequential updating (in
orderSN11, SN , . . . , S1, SN11 . . .) is given by

St11
j ­ tanh

"
b

√
j21X
m­1

JjmSt
m 1

N11X
m­j11

JjmSt11
m

!#
, (3)

where b is the strength of the gain andt ­ 1, 2, . . . , `

is the number of times each DOF has been updated [
that Eq. (3) withj ­ N 1 1 andJ as in Eq. (1) reduce
to Eq. (2)]. The first perturbation to be examined is
coupling matrix of the form

Jij ­ Rsid cos

∑
2p

N
KDsi, jd

∏
, (4)

whereDsi, jd stands for a spatial distance defined by
Toeplitz structure [see Eq. (1)], andRsid . 0. For a con-
stant amplitude,Rsid ­ R independent ofi, the coupling
matrix has a Toeplitz structure where each element
pure cos of one of the possible wave numbers,K . 0,
and hence the dynamics under a sequential updatin
equivalent to the SGen Eq. (2). However, for the gene
case where the amplitudes are independent (or even
of the amplitudes differs from the others), the dynam
Eq. (3), is of trueN 1 1 DOF. The network in this cas
cannot be compressed onto a SGen, Eq. (2), consistin
only one DOF. The dynamical solution of Eqs. (3) a
(4) is given to leading order inN by

St
j , tanh

Ω
As jd cos

∑
2p

N
Ks j 2 td

∏æ
. (5)

This solution can be verified by evaluating the sum o
m in Eq. (3) and expandingSt

j in a power series inAs jd.
The constantAs jd depends onb through the equation

As jd ­
bRs jd

2

X
msfijd

f1sssAsmdddd ,
bRs jd

2
Nf1 , (6)

where fksAd is defined by tanhfA cossxdg ;P
m.0 f2m21sAd seis2m21dx 1 e2is2m21dxd and f1 ; N21 3P
f1sssAsmdddd. Note that in leading order,As jd depends

on Asmd only throughf1. Expanding Eq. (6) for smal
hAsmdj we found that the network undergoes a Ho
bifurcation atbc given by

1 ­ bc

N11X
m­1

Rsmd
2 1 bcRsmd

,
bc

2

N11X
m­1

Rsmd , (7)

where forRsmd ­ Os1d, bc ­ Os1yNd and for constan
amplitudes, the Toeplitz case,bc ­ 2yNR, as expected
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[6]. For b , bc the only solution is the trivial fixed point
St

j ; 0. At bc, this solution becomes unstable and th
system undergoes a Hopf bifurcation to a periodic flo
Eqs. (5) and (6). The periodicity of the flow of the sta
of the N 1 1 DOF is NsN 1 1d, since the periodicity of
each DOF isN, Eq. (5). Hence, both the power spectru
of the spatial structure of the network,St

i i ­ 1, 2, ...
and that of the temporal power spectrum of each DO
St

i t ­ 1, 2, . . ., exhibit a dominant component at the sam
wave number,K . However, one should remember th
Eqs. (5) and (6) stand for the solution only in the leadi
order. There are small corrections at some wave numb
mK (m integer) and their weights are related to th
power spectrum ofh f2j21sssAsmddddj [8]. These small higher
harmonic corrections ensure that effectively on a lon
time scale the flow of each DOF will be quasiperiodi
This effect is demonstrated in Fig. 1 whereSt11

i versusSt
i

is plotted fori ­ 1, . . . , 5. Note that since the correction
are related to the power spectrum of a function of t
amplitudes,fsssAsmdddd, the results,St

j and bc, should be
sensitive to the detailed arrangement of the amplitud
This effect was indeed observed in networks with a sm
number of DOF but was found to be invisible for largeN
of the order of a few hundreds.

These results indicate that although the network cons
of N 1 1 nonredundant DOF, the dynamical evolution
each one of them is basically the same as for the SG
[Eq. (2)] but with the appropriate amplitudes. The corr
lations among the DOF are expressed only in the stren
of the amplitudes andbc [see Eqs. (6) and (7)].

In the same spirit of the above discussion one c
generalize the results to the case

Jij ­ Rsid cos

∑
2p

N
KDsi, jd 1 pf

∏
, (8)

FIG. 1. Result of simulations forSt11
i vs St

i for Eqs. (3)
and (4), with N ­ 101, Rsid [ s0.5, 1.5d, b ­ 0.035, and
the five quasiperiodic flows are related to the first five DO
si ­ 1, · · · , 5d.
4845
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where all rows have the same phase shiftpf and f [
f21 : 1g. ForK ¿ 1 one can show thatSt

i is given in the
leading order ofN andK by

St
j , tanh

Ω
As jd cos

∑
2p

N
sK1j 2 KN td

∏æ
, (9)

where

K1 ­ K 1 f KN ­ K 1 sN 1 1df (10)

and the amplitudes andbc are given by

As jd ­
bNRs jd

2
sinspfd

pf
f1 , (11)

bc ­
2P

Rsmd
pf

sinspfd
. (12)

The results of Eqs. (9) and (10) indicate that a pha
shift, pf, in the weights results in a frequency shif
K1 ­ K 1 f, of the spatial state of the network at a give
time . However, the frequency shift in the weights has
surprisingly dramatic effect on the temporal behavior of t
network. The frequency shift of the temporal success
states of each one of the DOF is proportional to thesize
of the network,KN ­ K 1 sN 1 1df. Results for the
power spectrum of the spatial structure of a network a
for that of the temporal sequence of one of the DOF
presented in Fig. 2. In the next more general case wh
the power spectrum of each row consists of the same sin
component

Jij ­ Rsid cos

∑
2p

N
KDsi, jd 1 pfi

∏
(13)

results are very similar to Eqs. (9)–(12); see [8] for d
tails. The only remarkable differences are thatf is re-
placed now by the average phasef ;

P
j fjysN 1 1d and,

for instance, Eq. (9) is given now by

St
j , tanhfffAs jd cossss2pyNhsK 1 fdj

2 fK 1 sN 1 1dfgtjddd 1 pfjggg

andAs jd ~ As jd
P

i cosfipsfi 2 fdg. The power spec-
trum of both the spatial and the temporal evolution of o
of the DOF for the caseN ­ 500 andfj a random num-
ber uniform in the intervalf0.1 : 0.3g is given in Fig. 2.
Note that in case thatfj is distributed homogeneously in
betweenf21 : 1g, A ­ 0, the result obtained for (13) is
no longer valid and a broadened power spectrum was
served in simulations [8]. Hence we can conclude thatas
long as rows are somewhat correlated the dynamic of
N 1 1 DOF is coherent and is reflected by averaged fe
tures likeK andf.

Let us now turn to examine the interplay, if an
between the complexity of the weights and the complex
of the trajectories, where the above discussion hints
the complexity is related to the correlations among ro
of the weights. There aretwo independent waysto
enhance the complexity of the matrixJ. In the first, rows
are decorrelated but each row is still associated with o
one Fourier component. In particular, one can definea
4846
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FIG. 2. Results for the temporal power spectrumSt
i for a

system defined by Eq. (8) withN ­ 500, K ­ 33, f ­ 0.1,
b ­ 0.005, and Rsid ­ 1 (full line), and the same system
but with K ­ 22 and randomfi , uniformly distributed in
the interval and (0.1, 0.3) (dashed line); see Eq. (13). In
The same as for the figure but for the spatial power spectr
St

i , i ­ 1, · · · , N 1 1.

prototypes of different rows,hKm, fmj m ­ 1, . . . , a, and
each row is associated atrandomwith one types

Jij ­ Rsid cos

∑
2p

N
KmsidDsi, jd 1 pfmsid

∏
. (14)

The second way to enhance the complexity of the weig
is to increase the complexity of each row; however,all
rows are still correlated. In this case each row is a lin
combination of the sameg components

Jij ­
gX

m­1

Rsi, md cos

∑
2p

N
KmDsi, jd 1 pfmsid

∏
. (15)

For g ­ 1 the system reduces to the one compon
case, Eq. (13), where forg ­ N and fmsid [ f21 :
1g, correlations among rows are absent and the sys
is equivalent to a random asymmetric network (t
amplitudes should follow a Rayleigh distribution).

For finite a in the first direction, Eq. (14), the solu
tion is very similar to that of Eq. (9), but each DOF fo
lows the properties of its own row,K1 ­ Kms jd 1 fmsjd,
KN ­ Kms jd 1 sN 1 1dfms jd and b in Eq. (12) should
be rescaled by1ya, since this is the fraction of rows as
sociated with each row’s prototype. Hence, different b
havior for the spatial and the temporal power spectrum
DOF associated with different prototypes is obtained. R
sults of simulations witha ­ 2 are presented in Fig. 3
The attractor dimension of each DOF is one (or domina
by one Fourier component), but the attractor dimension
the whole network is expected to bea, since there area
independent modes (genericallyfi andfj are incommen-
surate). Asa increases, the average number of rows as
ciated with each prototype decreases asNya. Hence, the
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signal to a solution of the type of Eq. (9) isNya, the num-
ber of coherent DOF. The rest of the DOF,Ns1 2 1yad,
are uncorrelated with this solution (associated with ot
components of the power spectrum) and result in an ef
tive noise of width

p
Ns1 2 1yad ­ Os

p
Nd on the em-

bedding field of Eq. (3). Hence, the signal to noise ra
becomesOs1d for

a , Os
p

Nd (16)

and a transition to a disordered flow, which may
defined as a chaotic flow, is expected. This beha
was indeed observed in simulations on systems withN #

1000. For a . Os
p

Nd, a solution of type (9) become
unstable and was replaced by a broadened power spec
characterizing the temporal evolution of each DOF (w
lack of correlations among different DOF); see [8] f
details.

These results indicate that one has to distinguish
tween the autocorrelation function of each DOFCt

i ­Pt0
t­1 St

i St1t
i yt0, and the averaged autocorrelation functi

Ct
av ­

PN11
i­1 Ct

i ysN 1 1d. While Ct
i is characterized by

one dominated component in the power spectrum up
a ­ Os

p
Nd, Ct

av decays exponentially to zero even f
finite a, sinceCt

av is a combination ofa quasiperiodic
functions.

Simulations for the second direction to enhance
complexity of the weights, Eq. (15), indicate that up
g ­ Os

p
Nd all DOF follow the same one componen

among theg possibilities, of the power spectrum and t
solution is as for Eq. (13). For a greaterg, a broadened
power spectrum was observed [8]. This upper bou
for the complexity of the rows can be explained
the corrections for the solution of type Eq. (9). T

FIG. 3. The system is defined by Eq. (14) withN ­ 500,
a ­ 2, K1 ­ 23, Rs1d ­ 0.5, f1 ­ 0.4, K2 ­ 89, Rs2d ­ 1,
f2 ­ 0.1, and b ­ 0.013. Result of simulations for the
temporal power spectrum for two DOF associated with th
two prototypes presenting peaks at wave numbers223s­
23 1 500 3 0.4d and 139s­ 89 1 500 3 0.1d following KN
in Eq. (10).
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amplitude of the corrections for each one of the ot
g 2 1 components is related to the Fourier spectr
of h f2j21sssAsmddddj [8] which is typically of Os1y

p
Nd.

Inserting these corrections into the dynamical evolution
the system, Eq. (3), one can find that the signal to no
ratio isN1y2yg and is equal to one wheng ­ Os

p
Nd.

Finally, these two independent ways of increas
the complexity of the weights, Eqs. (14) and (15), c
be combined. In this case there area prototypes of
rows where each prototype is a linear combination og

components of the power spectrum. Dynamically, up
some complexity measure of the weights the dynam
evolution of each degree of freedom is expected to
quasiperiodic (or dominated by one Fourier compone
All rows belonging to one prototype follow the same o
of its g components as discussed above. An upper bo
for the complexity of a matrixJ with ordered dynamics is
given bya 3 g # OsNd, where by complexity we mea
a 3 g —the number of independent modes construct
the matrix. This upper bound is deduced from the abo
mentioned results thata, g # N1y2. A better bound
can be obtained by the extension of the above sig
to noise arguments resulting ina2 3 g # OsNd for
the combined case [8]. The bound or the exact va
may be located by large scale simulations. Neverthel
one can conclude that the transition to chaotic beha
indicates the following general rule:N coupled DOF
cannot follow more thanNd 1y2 # d # 1 “instructions”
or different modes reflecting the structure of the weigh.
This interplay between the complexity of the weigh
and the dynamical behavior of the system explains i
natural way the emergence of chaos in a large assem
of well-behaved coupled DOF. A similar interplay w
recently found to be common also to static properties
Hamiltonian systems [9].

I especially thank D. A. Kessler for many fruitfu
discussions and critical comments during the proces
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