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Generalization Performance of Complex Adaptive Tasks
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Optimal strategies for predicting correctly the output of a few new random inputs, when various
feedforward networks are trained by noise-free random training examples, are examined analytically
and numerically. The existence of a universal strategy for various generalization tasks is discussed,
and indicates that the Bayes algorithm is not always the optimal strategy.
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The new statistical mechanics approach suggested by
Gardner [1,2] was commonly used for estimating the sta-
tistical nature of the fixed points of various networks,
which for sophisticated researchers is measured by the
quantity capacity [3]. This line of research has recently
been extended for the calculation of other functions of
networks. The aspect which attracts much attention is
the process of learning from examples in the architecture
of feedforward networks [4].

In this process, a set of random examples (random in-
puts) is chosen from a network which is called the teacher.
Another network, which in the simplest case has the same
architecture as the teacher, is trained by a learning al-
gorithm to predict correctly the classification (outputs)
of the teacher on this set of examples. The set of the
examples is called the training examples and the trained
network is called the student. The generalization perfor-
mance of the student is defined as the average probability
that the prediction of the student on a new random exam-
ple is correct. This probability depends on the strategy
(learning algorithm) which is adopted by the student.

The cornerstone of all the known strategies is the ver-
sion space (VS), i.e., the set of all the weight vectors
that are consistent with the training examples. One well
discussed strategy is the Boltzmann algorithm, which as-
sumes a constant density for any weight vector belonging
to the VS and zero everywhere else [5,6]. The probability
of predicting correctly is therefore the average probability
over all vector weights in the VS. However, it is proven
that the Boltzmann algorithm is not the best strategy [7].
The best strategy is known as the Bayes optimal clas-
sification algorithm, and was recently investigated and
compared both analytically and numerically to the Boltz-
mann algorithm (7, 8]. This optimal strategy is based on
the fact that without any prior knowledge, the teacher
can be any weight vector in the VS with equal probability.
Hence, the optimal prediction for a new random example
is fixed by the majority vote among the weight vectors
which belong to the VS. These two strategies, especially
the former, were examined exhaustively for the case of
learning from examples of a new random pattern for var-
ious types of perceptrons and for some limited classes of
multilayer networks (MLN) [4].
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In this Letter, the best strategy for complicated tasks
of learning from examples is examined both analytically
and numerically. The question of predicting correctly the
classification of one new random input is only a proto-
type aspect of possible generalization tasks. The opti-
mal strategy for predicting correctly the classification of
l new random inputs after the training of p examples is
at the center of the following discussion. Practically, the
process of learning from examples is an expensive pro-
cess whose aim it is to predict the classification of many
events (inputs). In such a case, an important task might
be to maximize the probability of a correct prediction
over some function of all the events. Basically, the num-
ber of such plausible different functions (tasks) increases
with [, the number of events. Nevertheless, one can dis-
tinguish between the following three main categories: (a)
to maximize the probability that the whole ! events are
predicted correctly, (b) to maximize the average number
of events which are predicted correctly, and (c) to maxi-
mize the average number of correct predictions as in (b),
under the constraint that at least k events (among l) are
predicted correctly. Such questions are relevant to any
set of events which are required to be predicted correctly,
and in particular they are important in the case where
an association among the sequence (or a subsequence) of
events has a logical content such as words, codes, etc. It
is interesting to examine whether the Bayes algorithm is
universal in the sense that it is the optimal strategy for
any generalization task, independent of the architecture
of the network, or whether the optimal strategy depends
on the details of the task and the network.

The following discussion concentrates mainly on cate-
gories (a) and (b) where the discussed architectures are
the perceptron and the committee machine (CM) with
three hidden units and with nonoverlapping receptive
fields [9, 10]. The generalization of the results to other
architectures is straightforward. More precisely, the per-
ceptron is a single layer classifier,

f(w) = sgn(w - x), (1)

where the input vector x is a real vector of N dimen-
sions, w is a weight vector, and the classification of the
perceptron is defined by f(w). In the discussed CM
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f(w1, wa, w3) = sgn[sgn; + sgn, + sgny], (2)

where sgn, stands for sgn(w; - x;), x; is a real vector
of N dimensions, and f defines the classification of the
network.

In the case of a perceptron and [ = 2, each random
input divides the VS into two regimes A;(£). These
symbols, A;(%), stand for the regime’s size of the VS
which is signed by =+ for the ith random input, and from
normalization of the VS to 1, A;(+) = 1 — A;(-). To
simplify the discussion and without the loss of any gen-
erality, assume that A;(+) > 1/2 for any i. In another
description, the VS splits into four regimes denoted by

A(£+); each one of them stands for the possible out-
puts of the first and second random inputs, respectively.
It is clear that the optimal strategy for predicting cor-
rectly the two inputs is to predict the answer following
the largest regime among the four, similar to the sense
of the Bayes algorithm. This algorithm is called in the
following Bayes, algorithm, or Bayes; algorithm in the
general case of | random inputs where the VS splits into
2! regimes. Let us prove now that in the thermody-
namic limit and in the simple architecture of the per-
ceptron, applying Bayes; twice is equivalent to apply-
ing Bayes, [11]. Since the inputs are uncorrelated then
A(£%) = A1(£)A2(2), respectively. Hence, the largest
area among the four is A(++) and the answers of the
two algorithms are identical. It is easy to verify that the
same identity occurs between Bayes; and Bayes; in the
general case of [ random inputs. In a similar way one can
also verify that Bayes; maximizes the average number of
inputs which are predicted correctly [which is equal to
the average area of 2A(++) + A(+—) + A(—+)]. Hence,
Bayes; algorithm is the universal strategy for the archi-
tecture of the perceptron with random inputs and in the
thermodynamic limit, but for finite systems fluctuations
are significant, A(£+) # A1(£)A2(+£), and the optimal
algorithm is Bayes;.

One may conclude from the simplest classifier that
Bayes; algorithm is the universal strategy at least in the
thermodynamic limit for any architecture. Nevertheless,
in the following it is proven that this conclusion is wrong.
Before the details are discussed let us introduce the no-
tion of a pocket. In the case of p training examples and
CM with three hidden units, the VS of the student is
constructed from 47 legal internal representation (LIR).
Each LIR is a set of p internal representations (IR) for
each of the examples, which gives the same output as
the teacher. Each weight vector (of 3V dimensions) in
the VS implements only one LIR. All the weight vectors
which belong to one LIR are defined as a pocket, and it is
clear that some of the 4P pockets can be empty. Note that
the notion pocket is not conjugate to a replica symmetry
breaking phase [12].

In the following we concentrate on cases where only a
finite number of pockets are available to the student. Let
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us mention now some of the cases where this assumption
is realistic. (a) In simulations, only finite numbers of
pockets are examined. (b) In cases where there is some
prior knowledge on the state of the hidden units of the
teacher, besides the desired output. In the case where all
the IR of the teacher are known, the VS is constructed
only from one pocket. However, when this knowledge is
noisy, a few pockets are available for the student. (c) It
is possible that there are many pockets which have the
same extensive entropy, but the corrections to the exten-
sive entropy lead to the fact that only a few pockets are
dominant. (d) Asymptotically, when the size of the train-
ing examples diverges, the size of the VS shrinks to zero.
It is still not known whether as the VS shrinks to zero
the number of LIR also decreases to zero, or whether the
number of LIR is exponential with the size of the train-
ing examples, but the size of each pocket shrinks to zero.
(e) Even if we assume that asymptotically the number
of pockets is large, they are strongly correlated (see dis-
cussion below). Hence, it is possible that effectively the
number of pockets is finite.

In the case of a CM where only one pocket is avail-
able for the student, then for the discussed generaliza-
tion tasks the optimal strategy, as for the perceptron, is
Bayes; which is identical to Bayes;. Assume that A;;(£)
is the size of the VS of the kth hidden unit where the
ith pattern gives the sign =+, respectively. One can easily
verify now that the part of the pocket which is signed by
+ is given by

Bi(+) = Au(+)An(+) + Ai(+)As(+)
+Ai(+)Aiz(+) — 24 (+) Aiz(+) Aia(+), (3)

and the output is fixed by the maximal regime among
B;(%). Furthermore, in the case of [ = 2, for instance,
one can show that

B(++) = B1(+)Bz(%), (4)

and therefore the results for the perceptron case are valid
also to the general case of one pocket in a CM with k
hidden units.

The case where many pockets are available for the stu-
dent is straightforward but, for simplicity, detailed results
are presented only for the case of two pockets. In the
discussed CM with only two available pockets, the pre-
diction of Bayes; algorithm is according to the largest
joint regime of the two pockets. Assume that the VS of
each pocket is normalized to 1 and assume that BY(%)
stands for the signed + regime of the ith input in the p’s
pocket. The output of Bayes; for each one of the two
inputs is fixed by the maximal signed regime in the two
pockets

max{B} (+) + B}(+), Bi(-)+ B}(-)}, (5)

where i = 1,2. In the case of Bayes, algorithm, the VS
of the joint pockets splits into four regimes, B(+=+), and
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the prediction is fixed following the maximal one

B(++) = Bi (+)B3(+) + B} (+)B3(+),
B(+—) = B{(+)B3(—) + B} (+)B3(-), ©6)
B(—+) = Bi(—)B3(+) + B{(—)B3(+),
B(—-) = Bi(—-)B3(—) + B{(—)B3(-).

Surprisingly, Eq. (6) is not always consistent with Eq.
(5), and therefore the predictions of Bayes; and Bayes;
are not identical. It is now clear that the optimal strat-
egy for predicting correctly two random inputs is Bayess,
and hence Bayes; is not the universal optimal strategy.
Running numerically on the allowed values for Bf(+),
one finds that the fraction of cases where the prediction
of Bayes; differs from Bayes, is 0.14. Note that although
14% is not a negligible fraction, it is not the right quan-
tity to measure the differences between the quality of
these algorithms for the following reasons. First, each
partition of the VS into two regimes of the sizes BY ()
does not have the same probability. Hence, the counting
of these cases should be multiplied by their probability.
Second, the quality of the two algorithms is not only a
function of the probability that their predictions are dif-
ferent, but is also a function of how much they differ.
More precisely, assume that Bayes; does not choose the
largest regime among the four, as does Bayes,. Since the
probability that the two inputs are predicted correctly
is proportional to the size of the chosen regime, the ra-
tio between the regimes chosen by the two algorithms is
also an important quantity in comparing the algorithms.
The following discussion is devoted to estimating these
differences quantitatively, both analytically and by sim-
ulations.

The cornerstone of the analytic work is the quantity
P(A), which stands for the probability that the VS of a
perceptron splits by a new random input into two regimes
of the sizes A and 1 — A, independent of their sign. A
similar quantity was recently calculated [8], and from this
one finds

2
P(4) = (@) e (-5l - 9@, ™)

where t is fixed by the solution of A = H(ty), H(z) =
[° Dt, Dt = (2m)~Y/%exp(—t2/2), and p = aN is the
size of the training examples. The explicit dependence of
~ on « for some special cases, such as the spherical per-
ceptron, is known analytically [4,5]. It is clear that P(A)
is symmetric around 1/2, since the sign of the output is
unbiased. It is also clear that there are average nonva-
nishing correlations among the IR of the hidden units
in each pocket. Nevertheless, this effect does not create
correlations among the probabilities, P(A), in different
hidden units, since the architecture consists of nonover-
lapping receptive fields. Hence, the probability that the
VS of each pocket splits by a new random example into
two regimes, B and 1— B, is given for the CM with K = 3
by

1 3
Q(B) = [ T] 44 PA)S(-2A1 Az s + Ards
Y =1

+A;A3 + AsAg — B) (8)

This probability is calculated numerically and serves as
a preprocessing for problems with more than one pocket.
Note that this preprocessing reduces the complexity of
the calculations and makes the numerical calculations
feasible for two and three pockets. The analytical re-
sults for predicting correctly I = 2 random inputs for one
pocket and for the spherical case are presented in Fig. 1.

For the general case of p pockets (even correlated) and
[ random inputs one can show analytically that

Tisye41 =T%, (9)
where the symbol T, 4i,+...4i; stands for the probabil-
ity of predicting correctly i; random inputs by Bayes;,
and additional i random inputs by Bayes;,, etc. The
starting point of the proof is that for p = 2, T} =
f dB,dBsy Q(Bl)Q(Bz)@(B1 +Bo— 1)(B1 +Bz)/2, where
Q(B1) and Q(Bz) can be correlated. Assume that Q(A;)
has the same meaning as Q(B;), but for another input.
It is clear that Q(A;) is uncorrelated with Q(B;) since we
deal with random inputs, and from that the derivation of
Eq. (9) is straightforward. The average number of inputs
which are predicted correctly is 3 (1) TH(1-T1)! " = IT3.
Hence, Bayes; is the universal optimal strategy to max-
imize the average number of correct predictions.

020 01 o0z 03 04 05 06 07 08 08 10
q
FIG. 1. Results for Th41 and T, as a function of g for

the discussed CM with a spherical constraint on the weights
[a(g) is given explicitly in Ref. [5]]. (a) Analytical results for
T3, for one pocket, derived from Eq. (8). Two uncorrelated
pockets, Th41 (b1) and T2 (b2). Two correlated pockets, Eq.
(10), Ti+1 (61) and T% (02). Simulations of 7141 (d]) and T2
(d2). Inset: The probability P(Ti4+1 # T2) (lower two lines)
and the average T1+1/T2 (upper two lines) vs q. Analytical
results for correlated pockets, Eq. (10) (dashed lines), and
simulations (full lines).
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Quantitative results even for the case of two pockets
are more involved. In the case where the correlations
among the pockets are negligible, one can show that T3
converges asymptotically (@ — oo) to 9/16, instead of
1. Nevertheless, the results for 7% and Tj4; for this case
of uncorrelated pockets are presented in Fig. 1. A more
realistic model takes into account the correlations among
the pockets, and the simplest type of correlations is such
that

P(B3|B:1) = CP(B2)(1 — |B2 — Bilg), (10)

where C is a normalization constant, P(Bz|B1) is a con-
ditional probability for B, given B;, and ¢ is the aver-
age overlap between two vectors of N dimensions in the
VS which belong to one hidden unit [4]. It is clear that
P(B;|B;) obeys the trivial limits. At ¢ = 0, B; is inde-
pendent of B; and as ¢ — 1, P(B;) is constructed from
two delta functions with probability 1/2 at 0 and 1, and
hence B; is fully correlated with B;. In the intermedi-
ate regime, 0 < ¢ < 1, the probability of B, being in a
distance |z| from B; decreases as xq. The analyical re-
sults of this simple model for T» and T34+ are presented
also in Fig. 1. The results for both cases of correlated
and uncorrelated pockets indicate that T, # T14,. Fur-
thermore, finer quantities, defined above, can be used
to compare both algorithms. Using Egs. (7)—(10), the
probability that both algorithms differ in their predic-
tions, Ppne(T2 # T1+1) and the average T141/T5 for these
cases were also calculated analytically and presented in
the inset of Fig. 1. The results roughly indicate that
for 10% of the samples the prediction of both algorithms
differs by 10%.

In order to examine the assumption, Eq. (10), and
the effects of finite size systems, heavy numerical simu-
lations were carried out. The size of the input of each
hidden unit was 16 < N < 48 and the second pocket
was found from random initial configuration by the least
action algorithm [9, 10]. The VS of each pocket was sam-
pled by 5000-20000 random movements and each point
was averaged over 3000-5000 samples. The results for
the spherical case are presented in Fig. 1 from which it
is clear that the average T1.1/T> and P, are close to the
analytical predictions even for small systems. Significant
deviations for small g are due to strong fluctuations at
finite p, and decreases when the size of the system in-
creases [13]. Note, however, that in the limits ¢ — 0 or
1 the differences between both algorithms vanish. The
effect of correlations among the pockets is not negligible
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and even a simple type of correlation among the pock-
ets, Eq. (10), gives a deviation of a few percent from the
exact results, which depend on the whole structure of cor-
relations. Furthermore, similar deviations were found be-
tween the exact analytical results and simulations (same
size system) for the perceptron. Hence, it is expected
that the results of Eq. (10) should be very close to the
exact results in the thermodynamic limit.

For the third category of generalization tasks neither
Bayes; nor Bayes; is the optimal strategy. The optimal
strategy for these cases is a table which indicates for each
type of partition of the VS to make a prediction following
a particular part of the VS, among 2!. The major rea-
son for such a behavior is that there is no definite order
among the sizes of the 2! parts of the VS, independent
of the partition. The minimal size of the table is still
in question. Note that the above-mentioned universality
strategies also split into many tables where the inputs
are correlated.
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