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Do Classical Spin Systems with the Same Metastable States
Have Identical Hamiltonians?
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The question whether systems having the same set of metastable states have identical Hamiltonian
and hence identical dynamics is addressed and examined for various classical spin systems. The
answer depends on the number of metastable states and on the distribution of the local fields for
small fields. The rule that static properties determine dynamical properties is found to be applicable
for a large class of random systems, almost any random system in the mean-field limit and many

random systems in finite number of dimensions.

PACS numbers: 05.20.-y, 75.10.-b

Statistical mechanics of classical systems has devel-
oped into a field of growing interest during the second
half of this century and it continues to be a source of new
ideas for many interdisciplinary fields. It is constructed
mainly from two major subfields, equilibrium statistical
mechanics and nonequilibrium statistical mechanics. The
former subfield is older and has achieved much progress
in comparison to the latter. In general, equilibrium and
nonequilibrium properties of physical systems are treated
separately. The investigation of each one of these fields
requires different analytical methods and concentrates on
a different set of important physical quantities. For in-
stance, for equilibrium statistical mechanics at low tem-
peratures essentially only the ground states are relevant,
whereas the dynamical properties of a state far from equi-
librium are sensitive to other quantities, such as local
minima, barrier heights, etc.

To illustrate, consider a ferromagnetic (FM) Ising spin
system in the mean-field (MF) limit. The ground states
of the system are the FM states where all spins occupy
the same state, and the average magnetization as a func-
tion of the temperature is also well known. It is clear that
this comprises the complete equilibrium information re-
garding this system. Can one conclude from this that
two systems having the same equilibrium macroscopic
properties consist of identical Hamiltonians?

For this illustrative example the answer is no. Assume
that the distribution of the FM weights (interactions) in
the two systems have on the average the same first and
second moments. It is clear that the two systems have
the same equilibrium properties, but different dynamical
behavior. Since the weights are different, starting from
the same initial configuration, the two systems evolve
differently.

For the class of spin glass (SG) systems [1], it is true
that the static properties (fixed points of the dynamics
at zero temperature) alone give a clue as to the average
characteristic behavior of the dynamics. The existence of
many metastable states (MS) (together with the assump-
tion of huge barriers) leads to long relaxation times. This
dynamical behavior is common to any SG system, as is
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the fact that short relaxation times characterize any FM
system, but clearly do not uniquely identify the system.

In this work we do not claim to solve explicitly the
dynamics of any system. However, we address the ques-
tion of whether static properties and dynamical proper-
ties are in general fully conjugate. More precisely, we
ask whether systems with the same MS necessarily have
the same weights. It is clear that systems which are de-
scribed by the same Hamiltonian also have identical av-
erage macroscopic dynamical properties under any type
of detailed balance dynamics, and furthermore have the
same microscopic evolution when the systems are subject
to the same noise.

Illustratively, one may consider the following exam-
ple. Assume that two sandpiles have exactly the same
locations of local minima. Does this information neces-
sarily indicate that the surfaces of these two sandpiles
are identical? In a similar manner one may ask a ques-
tion regarding two polymers or any two physical systems
having the same phase space.

Surprisingly, we will show that static properties deter-
mine dynamical properties for a large class of systems.
The answer to the question of whether systems with the
same MS have identical Hamiltonians depends in general
on the number of MS and the distribution of the local
fields in these states. The following two fundamental
questions are also discussed below: (a) Is it possible to
find a classical spin system with any number of local min-
ima? (b) Is the distribution of the local fields in the MS
a function of their number? Is it possible to construct a
random system with any shape of the distribution of the
local fields?

The first system examined is a pure Ising SG system in
the MF limit and with binary weights described by the
Hamiltonian

H= —ZJijSiSj = —ZS,hq (1)
(i) i
The summation is over all pairs of Ising spins, S; = £1,

h; is the local field on the ith spin and the distribution
of the weights is given by
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P(Ji;) = 3 8(Jij — 1/VN) + 3 6(Ji; + 1/VN),

(2)
where N is the size of the system [2]. The following
two main results were obtained in the early days of SG
regarding this model: (a) The number of MS was calcu-
lated analytically and found to scale exponentially with
the size of the system, exp(AN) with A ~ 0.199 [3,4].
(b) The internal field distribution, P(|k|), in the ground
states was suggested by Anderson to be proportional to
h® for small fields with o > 1. In numerical simulations,
P(]h|) was actually found to saturate the lower bound,
a =1 [5]. These results are not sufficient. Further pre-
liminary results regarding this model have to be obtained
in advance before we will be ready to examine the main
goal of this work, whether static properties determine the
dynamical behavior.

Using extensive simulations we are able to expand our
knowledge regarding this model and to obtain the fol-
lowing results. We verify that the number of MS grows
exponentially as e4N with A ~ 0.19 (see Fig. 1). The
method used in the simulations was to build a table of
distinct MS, using zero temperature Monte Carlo dynam-
ics initiated from many random configurations. For each
size of the system, a halting criterion was chosen follow-
ing the rate of appearance of a new MS [6]. The lower
bound obtained for A in the simulations is very close to
the theoretical prediction [3,4]. This table of MS serves
as the main database for the following investigations.

Second, the internal field distribution averaged over all
MS is found to scale for small fields as P(|h|) o h, as for
the ground states, but with a greater slope. Furthermore,
the average probability for the minimal field |hmin| =
1/v/N on each spin was found (see inset, Fig. 1) to scale
as

PN(lhminl) =4-5/N- (3)

This result can be understood using the following argu-
ment. For the case of continuous weights with Gaussian
distribution [7] which will be discussed below,
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FIG. 1. Number of MS for pure SG (o) and for ¢ = 0.4

(A). The line describes 2e%'*N. Inset: Amin vs 1/N for pure
SG; the line describes 4.5/N.

o) = [, @)

it was found in our simulations that P(0) o< 1/v/N, as
was previously obtained for the ground states [5]. Hence,
the weight of the local fields up to 1/ VN is proportional

to

1/vN 1

/ P(h)dh o . (5)
0 N

Since the behavior of continuous and discrete SG systems
is expected to be the same in the MF limit, it is now clear
that the relation between P(|h|) for small fields in both
cases is like the relation between a continuous function
and a histogram.

It is important to note that Eq. (3) only indicates that
in the ensemble of MS each spin on the average has a local
field equal to Amin(4.5/N)eAN times. The fluctuation of
P (|hmin|) in different spins was examined and was found
to be negligible in the leading order. Hence, all spins have
the same probability in the leading order to be in a MS
with Amin. Details on the distribution of Amin will be
given elsewhere [6].

The last question which has to be answered in ad-
vance is whether the frustration is distributed homoge-
neously over all the weights. In each MS of Egs. (1) and
(2) roughly one-half of the weights are frustrated, since
the energy is an extensive quantity and the strength of
the weights is 1/+/N. An important question is whether
there are weights which are not frustrated (or frustrated)
in any MS, or are all weights equally frustrated. In the
case that the frustrated weights in each MS and among
the MS are uncorrelated then the following Gaussian dis-
tribution, P(z), for the number of times that a weight is
frustrated is expected [i.e., each weight executes a ran-
dom walk of length exp(AN)]:

P(z) = Ce~ (= Be)?/227, (6)

where C is a normalization constant, e4V is the number
of MS, and B is a constant which is expected to be equal
to 1/2 in the thermodynamic limit. Nevertheless, the
correlations cannot be neglected even for the MS and the
distribution is fit by form

P(x) _ Ce_DN2(m_BeAN)2/262AN, (7)

where D is a constant of order unity (for N = 50,100,
D ~ 0.36, B ~ 04, and B — 0.5 as the system’s size
grows). Using Eq. (7) and the above analogy to random
walks Eq. (6), we expect the standard deviation to vary
as p/In(p), where p is the number of examined MS; see
Fig. 2 where each point is averaged over a few hundred
samples. Furthermore, following Eq. (7), the minimal
z with nonvanishing probability should be proportional
to [B — 24/2In(N2/2)/DN?|eAN. This was indeed con-
firmed in our simulations and the effect of a long tail can
be neglected. Hence, one can say that although the ef-
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FIG. 2. o is the standard deviation of P(z) [see Eq. (7)]

and p is the number of examined MS. The line describes
0.59/In(p). Inset: A typical distribution P(z) for N = 50
and p = 1000; average = ~ 420 and o ~ 86 ~ 0.59p/In(p).

fect of correlations is visible, Eq. (7), in the leading order
the number of times that each weight is frustrated is the
same and equal to one-half of the number of MS.

Let us now prove in a negative way that there are no
two different pure SG systems, Eq. (1), in the space of
the weights (of size 2V (M ~1)/2) which have an identical
set of MS. Assume that the weight {J} of system o and
its set of MS of the size eAN are given. Assume also that
there exists a different system defined by {Jg} which has
the same set of MS as system a. From Eq. (3) one can
deduce that the average number of times that each spin
has Amin in all MS is oc eA¥ /N. To move from {Jg} to

{Jg} one has to flip on the average some of the N —1
weights connecting each one of the N spins. On the av-
erage, one-half of these weights are frustrated and the
processes that a weight moves from being frustrated <
unfrustrated have the same probability. Since the spins
are uncorrelated in the leading order with respect to dif-
ferent MS [4], the average probability that a spin with
local field hmin in system a will remain stable after the
flip of the weights is 1/2. (For instance, if the sign of an
unfrustrated weight is flipped then a spin with hy;, con-
nected to this weight loses its stability.) The probability
that this spin will remain stable at least in all MS where
its field is equal to Amin (in @) is given by

(41", ®)

This factor decreases to zero much faster than 2V°/ 2,
the number of different possibilities to system (. Hence,
system [ does not exist and the solution is unique. It
is clear that the same argument holds even for the case
where systems o and (3 differ in one weight only. In this
case, Eq. (8) applies only to the two spins connecting
this particular weight.

For a pure SG system with Gaussian weights, Eq. (4),
the following results which characterize the MS are ob-
tained, as was previously obtained also for the ground
states [5]. (a) P(h) o h for small fields. (b) P(0) scales
as 1/v/N.
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The examination to determine whether there exist two
different systems with the same set of MS should be mod-
ified in the case of continuous weights. Assume that in
one system the strength of one of the weights is modified;
J — J+¢€ where € < |J|. Let us now estimate the proba-
bility that all MS do not lose their stability. The number
of MS with local fields less than € on a spin connected to
the modified weight is proportional to

eAN/ P(h)dh < €AV, (9)
0

Each one of these MS loses its stability after the modi-
fication with probability 1/2. Using a similar argument
as for the binary case, Eq. (8), one can verify that the
probability that all MS do not lose their stability is given
by

[pjee™™”, (10)
where a and p are constants of order unity. [Since v NJ
is of O(1) and the energy is an extensive quantity, a fi-
nite fraction of the weights are frustrated.] One can also
verify that a similar probability holds when few weights
are modified. This probability drops to zero (polynomial
corrections due to e—N’Ine , the size of space of weights
under scale ¢, are neglected) as long as

e < e VAN (11)

in the leading order. Only systems whose weights differ
by a constant of order e VN may have the same MS. The
actual modification may be even smaller, since Eq. (11)
is only a necessary condition.

Let us now leave the details and return to our main
goal, whether static properties determine the dynamics
of pure SG with continuous weights. Assume that there
are two systems having the same MS. Following Eq. (11),
their microscopic evolution is identical (when they are
subject to the same noise) on the average for times t,

t < evVAN, (12)

A simple way to understand this result is to imagine a
Monte Carlo process of two such systems with the same
initial conditions. It is clear that in the leading order the
first time step in which at least one of the spins behaves
differently in both systems is given by Eq. (12). In con-
trast to a SG system with discrete weights, for continuous
weights static properties determine the dynamics up to
some cutoff time. However, as long as the number of MS
scales exponentially with IV, this time diverges as evVN.

The following discussion is devoted to examining the
generality of the connection between static and dynam-
ical properties. The two cornerstones of the above-
mentioned discussion are (a) eA¥ MS and (b) no gap
in P(h) as h — 0, where a gap in the discrete case means
that P(hmin) = 0.

Let us first discuss briefly why it is impossible to vio-
late (b), to find a random system in the MF limit with
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exponentially many MS but with a gap. Assume that
such a random system [P(J;;) independent of P(Jk)]
exists and the minimal nonvanishing P(|h|) is A® > Amin.
Let us now flip [or modify following P(J)] the weights
such that the sum of the absolute value of the modifi-
cations is Y and § < Y < h®. It is clear that there
are many such modified systems whose weight is greater
than the weight of the original system and that these
modifications cannot alter the stability of the MS. Nev-
ertheless, these modifications weaken by 6; a finite frac-
tion of the exponentially many local fields of the strength
h® < h < hO + 65, with 6, < 6,. Hence, we end with a
contradiction that P(h) # 0 for h < h®. The idea behind
this proof is to show an instability for P(h) in the space
of the weights.

The relation between static and dynamical properties
seems to be sensitive to the number of MS and to the
exact form of P(h) for small h. For a discrete system
with N* MS, for instance, one can show that the so-
lution is not unique for some z < z, where z¢ is a
function of the shape of P(h) [6]. It is therefore inter-
esting to examine the following questions: Is it possible
to construct a random system with any number of MS?
What is the plausible interplay between the number of
MS and the shape of P(h)? The two limit cases, FM
(2 MS) and spin glass (eAN MS), are known, but the
intermediate region is in question. Surprisingly, there
is no intermediate region. Following Ref. [7] we proved
analytically that for a system as in Eq. (1) and with
P(J,J) = (1 — C)&(Jij - I/N) + Cﬁ(Jij + 1/N) where
¢ = O(1), the number of MS in the leading order is the
same as for the pure SG case [6]. The results of the nu-
merical simulations for ¢ = 0.4 and N < 40, for instance,
are presented in Fig. 1 and indicate that indeed the num-
ber of MS scales as e4™ with A > 0.18. Furthermore, all
the previously discussed properties of the pure SG case,
such as the scale of P(0) and the distribution of the frus-
tration, also hold for the case ¢ # 1/2. Hence, the conclu-
sions regarding the relation between static and dynamical
properties for both discrete and continuous weights hold
also for the nonpure SG and even for systems with a FM
ground state and short relaxation times. The pure FM
system is a unique and exceptional system.

For MF Heisenberg SG, a gap in P(h) is expected for
the MS, as previously found for the ground states [5].
Nevertheless, since spins have continuous degrees of free-
dom the gap is meaningless in relation to our discussion,
and small changes in weights lead to different MS. Hence,
our results are expected to hold even for this model.

The number of MS in a two-dimensional square lattice
with random +1 weights was previously found to be eAN
with A ~ 0.14 [1, 8]. We analyze a similar model where

each spin is connected to three weights of strength +1
and to one weight of strength +1.1. This modification
ensures a zero entropy at zero temperature and a unique
solution to the strength of the weights connected to one
of the spins if its state is known for all of the sixteen
states of its four neighbors. It was found in the simula-
tions that the exponentially many MS uniquely define all
the weights, and hence static properties determine the
dynamics. It is clear that this is not the case for this
model with continuous weights. This model with RKKY
weights [1,9], Ji; = %|ri;|~3, where r;; is the distance
between spins ¢ and j, was also examined numerically. It
is found that Py (0) decays much more slowly than 1/N
(may be as 1/InN) and it is therefore expected that our
conclusions hold even for this model.

Finally, we briefly discuss the analogy between this
work and the question of learning from random exam-
ples, one of the current areas of interest in the theory
of neural networks [10]. On one hand, each spin in Eq.
(1) behaves like an output of a perceptron with N — 1
input units. However, there are many crucial differences:
(a) Our system, Eq. (1), is a recurrent network and for
that reason P(h) is not Gaussian as for the perceptron.
(b) The random examples are replaced by the MS which
are a correlated subset of measure zero. This analogy
raises the following interesting question. What is the
number of pure SG systems having different sets of MS?
Following Eq. (11) this number is bounded from below
by O(exp(N?9)), since the relevant scale of a weight is
O(e"/ﬁ), and an upper bound is given by exp(N3), the
number of Boolean functions which can be implemented
by N independent perceptrons.
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