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A dilute nonsymmetric ferromagnet and a version of the Hopfield model are solved in the limit where
the average number of inputs per spin is finite. The solution is based on the fact that the magnetization
of each site is a function of the number and the type of inputs and their connection strengths. Extension
of this solution to the symmetric case is discussed. The solution can also be extended to any other distri-

bution of interactions.

PACS numbers: 05.50.+q, 75.10.Nr, 87.10.+¢

Spin-glass models for associative memory have been of
increasing interest in the last few years.!™ As first pro-
posed by Little! and Hopfield, these models are based
on an Ising Hamiltonian and hence can be treated by
equilibrium statistical mechanics.® Two assumptions are
crucial to allow for an exact solution of the equilibrium
properties of the model: The synaptic connections are
assumed to be symmetric and each neuron is assumed to
be connected to an infinite number of other neurons.
However, in biological networks, the synapses are known
to be asymmetric and on the average a neuron is con-
nected only to a fraction p=~10~% of all neurons.
Hence, it is important to study the effects of asymmetry
and extreme dilution.

The dynamics of nonsymmetric models has recently
been investigated in the limit of extreme dilution.*” In
such solutions the system is described only by the aver-
age magnetization.

In this Letter, I give a solution for the dynamics of a
highly dilute nonsymmetric ferromagnet and a nonsym-
metric Hopfield model. The solution is based on the fact
that the magnetization is inhomogeneous and depends on
the detailed geometry of the system. More precisely, the
magnetization depends on the number and the type of in-
puts and on the strength of the connections between each
site and its input sites. In particular in neural-network
systems, spins with small magnetization indicate the lo-
cation of errors in the pattern. Therefore, the knowledge
of the connection between the structure of the system
and the local magnetization a priori indicates the most
probable location of errors. This theory can be extended
to other highly dilute nonsymmetric systems, such as
spin-glass models. Finally, I will briefly discuss the ex-
tension of this theory to the symmetric case.

Following Refs. 4-6, the model considered here is a
sysztem of N Ising spins whose interactions J;; are given
by
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where &/ is the value at site / in the pattern y and p is
the number of stored patterns. The & is a quenched
random number having the values =+ | with equal proba-
bility. For the ferromagnetic case, p=1. The C;; are
random independent parameters which represent the di-
lution and the asymmetry. For each pair (i,;), a value
for Cj; is chosen at random according to the distribution

P(C)) =(c/N)8(Cy— D+ (1 —e/N)S(Cy). ()

The interactions J;; are not symmetric because for each
pair (i,j), C;j and Cj; are independent random variables.
In the highly dilute nonsymmetric model, ¢ is of the or-
der of unity. For this model the following two dynamics
can be considered.*

In parallel dynamics, at time ¢ all spins are updated
simultaneously in the following way: On each site i
which gets input from / other spins and the strength of
the connections are {J[,},’=1, the local field A;(/;J;y,
Jia, ..., Ji) is computed

/
hi(l;J[[,J,‘z, . ,J;/) = Zl.],'ij(l), (3)
j=

and the spins are updated at time ¢ +Ar with probability
1+expl—2h/(t)/T]1 ™" to be +1 and with probability
1+expl2h/(t)/T1 7" to be —1. For parallel dynamics,
the natural time scale is A1 =1.

In random sequential dynamics,* at time 7 one chooses
at random a site / among the /V sites and updates this
site at time ¢+ Az by use of the same rules as in the
parallel dynamics. Since at each time step only one spin
is updated, one should scale the time with the system size
At=1/N.

In this Letter I obtain exact results for the dynamical
properties of this model in the thermodynamic limit
(N— o),

The evolution of the configuration {S;(z)} having a
macroscopic overlap on one stored pattern and a micro-
scopic overlap on the other p — 1 random patterns, is de-

| scribed by the average magnetization at time ¢

éilSi(t), 4)
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where P(J),...,Jx) is the probability that K input connections have the strength J1,J5, . ..,Jx. The summation in
Eq. (4) is only for sites which receive an input from K other sites and the connection strengths are Jy, . ..,Jx. The
density of sites*™® which received any input from K other sites is given by

Nk=Ng/N=e ~°cX/K!. (5)

The origin for the inhomogeneous magnetization in the system is the dependence of the local field [Eq. (3)] on the num-
ber of inputs, the magnetization of the inputs, and the strength of the connections.
The dynamical evolution of m(t;K;Jy, . .. ,Jx) is given for the parallel dynamics by

m@+ LK, ... Jk) =fkim(G500. . I)Y, (6)
and for random sequential updating by

dm(t:K;J,, .. J))dt=fxim@lLd,, . I —mGK T, ... Jk), )
where fxim(l;J,, ..., J;)} is given by

1 K ||k |-t K
Sxlm it} =5k IZ‘,O[ {1 Jp=1NKpPl<p{J}(l +pr{J})] lp_l‘IHlNKpPKp{J}(l —pr{J})]
K(p-1) K »p K —9]—
x 3 <<5 [ Y ¥ erer—k(p—1)+2n|T16 [Zg;‘g,, —J,,]>>tanh [M] ®)
n=0 p=1pu=2 p=1 u T
where PiUI=PU, ... Jk,), me¥=mKi, ...,
JK,,), K,=0,1,2, ... with equal probability and the nota- input sites with the connection strengths Jy, . .. ,Jx have
tion ((- - - )) stands for the average over the distribution the same average m(K;Jy,...,Jx). Therefore, one
of {&1}. finds
The derivation of Eq. (8) is very similar to what has
been done in Ref. 4. Briefly, it is derived as follows. m+ ALK, LI =flomidy, Tk,
First, as long as c is small where m is the average magnetization.* It is important
¢ <logN: ©) to note that m(K =0) is equal to zero by definition.
I now concentrate my discussion primarily on the
the magnetization in the quenched and annealed models zero-temperature limit.
are both given by expression (8).8-10 This result is due In the ferromagnetic case all the remaining bonds are
to the fact that the inputs of almost all sites are not equal to J. Therefore, one can obtain from Eq. (8) the
correlated at any finite time. Therefore, under the re- following results:
striction Eq. (9) the calculation can be carried out for 2k) ~ema
the annealed model. - ML K10y — VK
The term Nx =e ~‘cX/K! in Eq. (8) is the density of m(2K) K[K ]f(l—m)ﬁ ! (1=0)%d1, (10)
sites having K nonzero inputs. The probability that K —/ 2k~
inputs are parallel to the pattern and / are antiparallel to = " — 1K
the pattern, and each input site receives by itself K|, in- mQK+1)=QK+1) K ]f(l“m)/Z [t =1z,
puts whose connection strengths J, . . . ,JK,, are given by (11)
the first two square brackets in Eq. (8). The last term is
the probability contribution of the remaining p —1 pat- where m(K) is the average magnetization of sites which
terns to the local field to be parallel to the first pattern. received any type of K inputs and m is the average mag-
This calculation must be done under the constraints netization m=Yx Nxm(K). The magnetization is inho-
n8(XerER—J,). The local field consists of two parts; mogeneous in the system; for example, m(1) =m, m(2)
the contribution k — 2/ from the macroscopic overlap and =m, and m(3) =(m/2)(3—m?). The result m(1)=m
the contribution k(p —1) —2n from the remaining p — 1 is trivial because the spin receives only one input and
patterns. therefore m(1) =Xk Nym(K)=m. It is clear that the

When one averages over all the shapes of highly dilute m(K) depends only on odd powers of m because of the
random graphs, all sites which receive inputs from any K | inversion symmetry in the system. From Egs. (10) and
(11), one obtains

2K (1—m)
m(2K+l)—-m(2K)=mK[K]j;l "L -01510 - 20041 (12)
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These results indicate that for K = 2, the magnetization m(K) is an increasing function of K, and m(K— o) — 1.
This result is due to the fact that in the ferromagnetic case, the magnetization of each spin is always greater than or
equal to zero. It is also important to note that m(K) is a function of ¢ only through the average magnetization m.

As a function of ¢, the system undergoes a second-order phase transition. By expanding Eq. (8) for small m(K), one
obtains that the equation for the critical ¢ is given by 1=ce ~¢[I¢(c)+1,(c)], which indicates that the transition occurs
at ¢=1.85. This result was confirmed in simulations on systems containing from 1000 up to 5000 spins. It is important
to note that m(K) «m for all K, which implies that there is only one transition for all the m(K)’s.

In the Hopfield case, the J;; are given by Eq. (1) where p is the number of stored patterns. Using Eq. (8), one finds
for odd p,

!

I+m ((sgn(Kp—21 —2x)PIK(p—1) = 2x,K(p — D)D)y, (13)

2

K |K

=0 2

k-1
[l—m

where P(x,y) is the probability of the equal-step random walk being at a distance x after y steps. The symbol ({ - - - )),
indicates the average over x. From Eq. (13), one should be able to find the m(K) for any K, for example,

m(1)=mPO,p—1), mQ)=mlP0,2(p—1))+PQ2,2(p—1))],
and

m3)=m/2)3—m?)P0,3(p—1))+m(3/4)P(2,3(p —1)).

Here again, m(K) is a function of ¢ only through the —

average magnetization m. The average m(K) is a non- that the fraction of spins which receive K inputs and
decreasing function of K, and m(K— ) — 1. This re- have a negative magnetization is a decreasing function of
sult is due to the fact that each input spin makes on the K and decreases to zero as K— oo. In principle, from
average a positive contribution to the local field being Eq. (8) one can calculate m(K,Jy,...,Jx) for any K.
parallel to the condensed pattern. More detailed results on the Hopfield model will be given
In contrast to the ferromagnetic case, in the Hopfield elsewhere.
case there are spins with negative average magnetization. One can find the distribution of higher moments fol-
This is due to the fact that the magnetization is also a lowing the procedure used to find the distribution of the
function of the connection strengths [see Eq. (8)]. For magnetization Eq. (8) (the calculations of higher mo-
example, the fraction [1—P(0,p —1)1/2 of m(1) has a ments in the homogeneous case are presented in Ref. 7).
negative magnetization —m. It is clear from Eq. (13) l For example, the compatible Edwards-Anderson'! order

parameter for any distribution of bonds is given by

1 K
KJi,....Jk)=—= T N [1+m(K,)S}]
qdEA 1 K 22K{s,',s,2r,1<,,} [11;11 KL TmK,)S)

X

K K K
IHlNKpn +m(K,)S/] ]sgn [ [}:‘J,-sjl} [Z‘JjSJZ] ] (14)
L = =

where K,=0,1,... with equal probability. For the ferromagnetic case, one can show, for example, gga(l)
=Y xNxm?(K)=m*(K) and gga(2) =m(K) 2 It is important to note that

ZKNKQEA(K) =ZK[<S(K;J], e ,JK))2] #N_lzimiz.

The symbol - - - } indicates the trace over the input spins, and the symbol [ - - - ] indicates an average over the distribu-
tion of the connection strengths.
One can easily generalize this theory and find the magnetization

m(K;Jy, .. Jg,m(U T, m Uk Tf)):

The magnetization of spins which receive K inputs whose connection strengths are equal to {/;}, respectively, and the in-
put spins themselves received {/;} inputs and their connection strengths are {/;;Ji, . .. i }. These kinds of magnetiza-
tions can easily be found from Eq. (8). One can generalize this picture further and claim that the distribution of the
magnetization depends not only on the nature of the input sites, but also on the nature of input to the input sites, and so
on. As long as the input depends only on a finite number (compared to log/V) of “levels” of the input tree, all the spins
which fixed each site are uncorrelated. One can find the distribution of the magnetization in such a case, in a way simi-
lar to the derivation of Eq. (8). Such a generalization is required to calculate the freezing in the system.
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In the symmetric case the distribution of the bonds is
again given by Egs. (1) and (2), but with the constraint
that C;; =Cj;. The full description of the ordered phase
requires knowledge of the entire distribution of the local
magnetization m;. Here again, I assume that the mag-
netization of each spin is a function of the type and the
number of the coupled spins and their connection
strengths. This is in contrast to the infinite-range case in
which the local field is a Gaussian variable.

In general, each spin can be coupled to K other spins
S1,...,Sk with a probability e ~“cX/K!. Because each
of the K spins is distant from the others with probability
1, one can show that the K coupled spins are uncorrelat-
ed (for more details, see Mezard and Parisi'?). Within
the hypothesis that there is only one pure state, self-
consistent equations can be written for the magnetiza-
tions m(K)

K
m(K) =<tanh [lg‘tanh ~tanh(BJ))m(K))] ] >,

K=0,1,..., (15)

where K is the number of coupled spins and the symbol
(---) indicates the average over the Poisson distribution
({)f }the {m(K;)} and over the distribution of the bonds
Jis.

In the ferromagnetic case, all the nonzero bonds are
equal to 1. At zero temperature, one can verify from Eq.
(15) that the system undergoes a second-order phase
transition at ¢=1. Solving Eq. (15) numerically at
c=1.5, for example, one finds that the m(K) are given
by 0.59, 0.84, 0.93, 0.98,... for K=1,2,..., respec-
tively. One can prove that m(K) is an increasing func-
tion of K, and m(K— o)— 1. The mass of freezing
spins is given by m=Xe ~cX/K'm(K)=0.59, which is
equal to the solution of the homogeneous case.'>!> The
magnetization is inhomogeneous even at zero tempera-
ture due to the fact that the distribution of spins which
couple to K other spins is different for the infinite cluster
and for the finite clusters. At finite temperature,
T==0.59 for example, the m(K) are given by 0.12,
0.246, 0.357 for K =1,2,3, respectively. The system un-
dergoes a second-order phase transition at 7,.=0.61.
From these results and from Eq. (15) one can verify that
near the transition temperature m(K)=Ktanh(8.m),
where m is the average magnetization. Here again, one
can extend this picture to a theory in which the magneti-
zation is a function of the type of the trees coupled to
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each spin in the system.

In summary, I have shown that the magnetization of
each spin is a function of the type and the number of in-
puts and the connection strengths. As a first approxima-
tion all spins with the same local structure have the same
average magnetization. I believe that this idea has an
important application in neural networks. The geometric
structure a priori indicates that the most probable loca-
tion of errors are spins with low connectivity. Therefore,
it seems plausible to embed the most important informa-
tion of each pattern (classification, category, etc.) in
spins with high connectivity.

This theory also indicates that it is preferable to use
an inhomogeneous temperature in the system, and also to
update the spins in order which depends on the local
geometry structure. For example, when the system has a
macroscopic overlap with one of the pattern, the com-
patible temperature for each spin may decrease as a
function of the connectivity. This procedure prevents a
disorder in spins with large magnetization. For the same
reason it is plausible to update first spins with low con-
nectivity.
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