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Abstract. An argument is presented to explain the fact that the same mean-field results apply 
to several spin glass models, such as the 'random-energy' model and the large-p Potts glass 
model. The dilute simplest spin glass model is solved, yielding the same mean-field results. 
The argument is based on the fact that the symmetry of the discrete-spin system can be 
determined by the discrete-spin type or by the form of the interactions. The mappingbetween 
the models can be extended to all forms of discrete-spin systems. 

Magnetic systems with random competing interactions often condense at low tem- 
perature into a spin glass (SG) phase. The mean-field (MF) theory based on the Edwards- 
Anderson model [l] reveals that the transition of the low-temperture phase is a con- 
tinuous transition, similar to an ordinary second-order phase transition. However, the 
SG phase is very unusual. It consists of many degenerate partially overlapping pure states 
characterised by an order parameter q ( x ) .  The inverse of the order parameter, x ( q ) ,  
determines the probability that two pure states have an overlap [2 ,3 ]  less than or equal 
to q. 

Recently, there has been a growing tendency to apply concepts of SG theory to various 
infinite-range discrete SG models [4-91 which are a generalisation of the SK model [5] .  
One form of generalisation consists of a spin with more than two components. Another 
form of generalisation is the replacement of the random pair interactions by multi-spin 
interactions. Several of these generalised SK models [4-91 have a similar MF solution. 

In this Letter, we show why models that differ in the spin representation and in the 
form of the interactions among the spins nevertheless exhibit a similar behaviour in their 
MF solution. The argument is based on the fact that each discrete-spin Hamiltonian can 
be mapped into an equivalent Ising Hamiltonian with multi-spin interactions. In this 
mapping each discrete spin o f p  discrete states is represented by a block of log2p Ising 
spins. 

We present now examples of systems that have a similar MF solution. The system of 
Np-state Potts variables a(i) = 1 , 2 ,  . . . , p  is described by the Hamiltonian [4,5] 

N 

The random pair interactions, .Iij, are of infinite range and are quenched gaussian- 
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distributed variables with mean [Iij] = Jo/N and variance [I$] = J 2 / N .  Related infinite- 
range models are the random chiral model introduced in [6] 

(with each J r  being an independent random variable) and the random anisotropic Potts 
model [4] 

N 0 - 1  

(where each = J;;‘ is an independent random variable). An example of a system 
where the random pair interactions are replaced by multi-spin interactions, with a similar 
MF solution, is the model of random p-spin interactions [7-91. The Hamiltonian is 

N 

where the spins si are Ising spins and the interactions Ji,,,,ip, for any group of p spins, 
are quenched gaussian-distributed variables. The model of large-p multi-spin inter- 
actions is known as the simplest SG model [7,8]. This model is identical [7] to the Derrida 
‘random-energy’ model, defined as a system of 2N independent random-energy levels 
distributed according to the probability distribution law 

P ( E )  = ( N ~ J ~ ) - ’ / ~  exp(-E2/NJ2). ( 5 )  
Application of the Parisi replica theory shows that although all these models, 

equations (1)-(5), are very different, they exhibit a very similar low-temperature phase. 
Unlike in the SK model, the order function q ( x )  is a discontinuous function. In particular, 
for a certain range of temperatures in the low-temperature phase, q ( x )  is a single-step 
function 

where 

1 - X a  T ,  - T. (7) 
This implies that the phase space splits into an infinite number of distinct SG (or Potts 
glass (PG))  phases which do not overlap. 

In the cases of three-state or four-state infinite-range Potts systems [4] and two multi- 
spin intractions [9], the transition from the paramagnetic phase to the SG (or PG) phase 
is continuous, q(1) = 0 at T,. For random systems with a higher order of multi-spin 
interactions [7-91 or Potts states [4], the transition from the paramagnetic phase to the 
SG (or PG) phase is discontinuous, q(1) # 0 at T,. The ‘single-valley’ order parameter 
jumps discontinuously from zero at T,, implying a discontinuous freezing of the local 
degrees of freedom in each of the valleys, which would be reflected by a discontinuity in 
the AC response to an external source [8]. 

We demonstrate now the similarity between the PG phase of the large-p random Potts 
systems and the ‘random-energy’ model with p N  states. These p N  independent random- 
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energy levels are distributed according to the following probability distribution law: 

P ( E )  = [ J C N ( ~  - I ) J ~ ] - ’ / ~  exp[-E2/(p - I )NJ~] .  (8) 
For each sample of p N  energy levels one can define n(E)--the number of energy levels 
lying in the interval ( E ,  E + dE).  This number fluctuates from one sample to another. 
However, the average value (n(E))  over all choices of the energies is easily obtained 
from (8) to be 

( n ( ~ ) )  = [n(p - I)NJ~]-’/’ exp[-E/(p - I ) N J ~  + ~ l n p ] .  (9) 
Using the same argument as in [7], one can show that the free energy is given by 

- T l n p  - J 2 ( p  - 1)/4T T >  T ,  
F I N =  { 

- ~ [ ( p  - 1) ~ n p ] l / ~  T <  T ,  

where 

T ,  = (J/2)[(p - l)/lnp]’/2. 

Similarly, the energy of the system for T < T, is given by 

I E , , \ / N  = ~ [ ( p  - 1) ~ n p ] l / ~ .  

Solving this model in the Parisi representation yields that q ( x )  is the step function given 
by (6) and (7) with q = 1 and x = T/T,, for all T < T,. These results and (10)-(12) are 
exactly the same as the solution of the infinite-range randomly interacting large-p Potts 
models. Thus, this model of p N  independent random-energy levels is equivalent to the 
simplest SG model consisting of Nlog,p Ising spins. the models are not completely 
similar. For example, calculation of the probability distribution P12(E1, E 2 ) ,  the prob- 
ability that two given configurations of spins have energies E, and E2 respectively, gives 
for the random chiral model 

P12(E1, E2) CC js dadBexp[icuEl + $E2 
--z - m  

- N J 2 ( p  - 1)(a2 + p2)/4 + J4(p - l)a2/3’/4]. (13) 

This result shows that for the infinite-range Potts model 

P12(E1, E2)  P(EI)P(E2) 

for all values of p .  (Still, calculation of P(E)  for this model gives again the same result 
as (-9.) Therefore, unlike the ‘random-energy’ model and the simplest SG model, in the 
Potts models there are correlations among the energy levels, even in the limit p + CQ. 

The similarity found for the MF solutions when p + CQ is found also for the finite p -  
states Potts model [4] and for finitep-spin interactions [9]. For these models, there are 
common ranges of temperatures for which q ( x )  is the single-step function (6) and (7). 

We now explain why a family of randomly interacting models exhibits similar behav- 
iour in the MF solution and why the mapping between the systems is not limited only to 
random systems with an infinite range of interactions. 

The replacement of each Potts spin by a block of 10g2p Ising spin is, in general, a 
necessary condition for the mapping between discrete-spin models. This is in agreement 
with the equivalency of the models discussed above. (For the cases for which p # 2R, 
R = 2,3,  . . . , one must add constraints or fields in order to avoid the forbidden states.) 
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In order to show more explicitly the similarity between the Potts model and the multi- 
spin interaction models, one should replace each Potts spin, ai = 1,2,  . . . , p ,  by a block 
of 10g2p Ising spins { s ~ } ~ ~ ~ .  Then, using the identity 

sspj  = (1 + S i S j ) / 2  (15) 

one finds 
N N b 2 P  

In the block Ising Hamiltonian, there are multi-spin interactions (of order 2, 4, . . . , 
2 log2 p )  between two blocks, but there are no multi-spin interactions connecting spins 
that belong only to one block. In the limit p + we see from (16) that most multi-spin 
interaction terms are of an order proportional to 10g2p. For this reason the MF theory of 
the infinite-range large-p Potts model is similar to the simplest SG model which has been 
shown to be equivalent to the ‘random-energy’ model. However, one can see from (16) 
that in the Potts model there is an additional finite number of multi-spin interactions of 
a finite order (compare with 10g2p). Another difference between the models is that in 
the simplest SG model the number of interactions is proportional to O(Np/p!) where in 
the large-p Potts case the number of interactions is proportional to O(pN2). Quali- 
tatively, we can predict from the mapping that in the case of dilute simplest spin glass, 
the smaller number of interactions does not effect the order function q ( x )  but is respon- 
sible for the correlations among the energy levels as given in (13) and (14). This will now 
be shown qualitatively. 

The Hamiltonian of the dilute simplest SG model is the same as in (4) in the limit of 
large-p multi-spin interactions. The { J ; , ,  , , i,} are randomly distributed according to the 
probability distribution 

P ( J i l , . , r p )  = Cf‘l(Jil..,i,) + (1 - C ) a ( J i i  . . .  i , )  

P I  (.Ti,, , , i , )  = (Np- ‘ c / J 2 p ! )  exp( - J f , ,  , , i p N p -  c / J 2 p ! ) .  

(17) 

(18) 

where P1 is given by 

The distributions given by (17) and (18) indicate that the simplest SG model is diluted at 
random. The total number of remaining multi-spin interactions in the system after the 
dilution is (NP/p!)c. Calculation of P(E) for this model gives again 

P ( E )  = ( J C N J ~ ) - ” ~  exp(-E2/J2N) (19) 

E > 0. (20) 

where c satisfies the inequality 
c > N-P+l+& 

Calculation of Pl2(El, E 2 )  under the assumption of (20) gives 

J2p! 
x n [ I - c + c e x p  -- 

r l < i 2 . .  . < r p  ( 4NP-l 

x (2: + 2; + 2 2 1 2 4  . . * SipSil 1 2  . . . S?,,)]. 
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From this it can be shown that P(E1, E 2 )  # P(E, )P(E2) .  However, calculation of the 
partition function for this model under the assumption of (20) gives again the step 
function solution given by (6) and (7) with q = 1 and x = T/T,  for all T < T,, where T, 
is the same as in the undiluted case. Equations (17)-(21) prove that if the remaining 
multi-bonds is the dilute simplest SG model is greater than"+&, E > 0, the order function 
q ( x )  is the same as in the undiluted case. The correlations between the energies are a 
function of the dilution of the system, the weight of the finite-order multi-spin inter- 
actions and the correlations among the interactions, as in the Potts case. 

For a finite number of Potts states, the weight of the dominant-term multi-spin 
interactions of order logzp becomes smaller. Nevertheless, near the transition from the 
paramagnetic phase to the SG (or PG) phase, the finitep-states Potts model and the finite- 
p multi-spin interaction behave similarly, and q ( x )  is the single-step function given in (6) 
and (7). At lower temperatures, each of the original pure SG (or PG) states splits into a 
hierarchical manifold of an infinite number of partially correlated states. The partial 
overlap between the states and the correlations among the energy levels can be different 
from one model to another. 

We now generalise this mapping and claim that all discrete-spin Hamiltonian can be 
replaced by an equivalent Ising Hamiltonian by using the following rules. 

(i) Each discrete spin, which can be in p different states, should be replaced by a 
block of logzp Ising spins. For the cases for which p # 2R, R = 2, 3, . . . , one should 
replace the discrete spin by logzp Ising spins, and add constraints in order to avoid the 
forbidden states. 

(ii) The interactions among the blocks should be determined by the special symmetry 
of the original discrete-spin Hamiltonian. In order to obtain the explicit interactions 
among the blocks, one must represent the interaction between two (or more than two) 
discrete spins by a combination of Kronecker's b-functionst. This combination of the 
b-functions determines the explicit number and the form of the multi-spin interactions 
among the blocks in the equivalent king Hamiltonian. 

The ability to replace each discrete-spin Hamiltonian by a compatible king Ham- 
iltonian results from the symmetry of the system being determined by two independent 
variables: 

(i) the discrete-spin representation; 
(ii) the form of the interaction among the spins. 

This means that if the spin representation is given, one can determine the symmetry of 
the system by the form of the interactions, and vice versa. This mapping can easily 
be extended to discrete-spin models with short-range interactions in any number of 
dimensions. 

Another similarity between the multi-spin interactions and interactions between 
spins with more than two components is the nature of the spin's frustration. Given a loop 
with more than two negative bonds, one can then prove the following statement: the 
ground-state energy is unfrustrated when the number of spin components or the order 
of multi-spin interactions is greater than three. This result is in contra distinction to the 
well known result for the Ising system, where the frustration depends only on the sign 
of the total product of the bonds. 

7 In the worst case, for any possibility of an interaction between two blocks, one can write a special term, 
which is a combination of &functions. 



L262 Letter to the Editor 

Finally, we note as an application that in solving the Potts neural network [ll] one 
can use the above mapping to explain the growth in the capacity of the system, relative 
to the king system, by using a multi-neuron synapse. the above mapping can also clarify 
what the weight is of the terms that are responsible for the breaking of the symmetry 
and may also be used to explain some results in random graphs with multi-edges. 

It is a pleasure to thank Professor H Sompolinsky for numerous stimulating discussions 
and for encouragement. I would like also to thank Professor B Derrida, Professor A J 
Amit and Dr D Ben-Avraham for helpful conversations. 
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