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A neural network model which is capable of recalling time sequences and cycles of patterns is intro-
duced. In this model, some of the synaptic connections, Ji;, between pairs of neurons are asymmetric
(Jij#J;) and have slow dynamic response. The effects of thermal noise on the generated sequences are
discussed. Simulation results demonstrating the performance of the network are presented. The model
may be also useful in understanding the generation of rhythmic patterns in biological motor systems.

PACS numbers: 87.30.Gy

Studies!~3 of neural-network models of associative
memory focussed mostly on systems with symmetric cou-
plings, i.e., the connections between pairs of neurons
satisfy Ji; =Jj;, i=j. In this case, the dynamics of the
network is relatively simple: The system relaxes to states
which are local minima of a global energy function, E.
Once such a local minimum has been reached it remains
absolutely stable (at zero temperature). To endow the
network with properties of associative memory, the Jj;
are designed so that a given set of states of the network
(the embedded memories) are local minima of E. The
synaptic connections in biological neural networks have a
high degree of asymmetry, but the role of the asymmetry
in the collective behavior of the networks has been un-
clear. Recent studies have indicated that adding a weak
random asymmetry to a symmetric network increases the
level of the internal noise but otherwise does not modify
drastically the capability to store and retrieve informa-
tion. 143

Symmetric networks cannot provide temporal associa-
tion. They lack the ability to retrieve a sequence of pat-
terns using a single recalling input. In this paper, a
model of a neural network with temporal association is
proposed. The network has asymmetric bonds in which a
sequence of patterns is embedded. In general, asym-
metric bonds may give rise to cyclic or perhaps even
chaotic flows in configuration space. However, there is
no reason to expect that these flows enjoy the same kind
of robustness (e.g., large basins of attraction, indepen-
dence of the details of the dynamics, stability against
noise) as that of stable states in symmetric networks.
Evidently, a desirable motion would consist of a con-
trolled set of transitions among ‘quasiequilibrium”
states: The system stays in a state (or in its neighbor-
hood) for a long but finite period of time after which a
transition is made to the next quasiequilibrium state in
the sequence. To accomplish this, we propose that the
response of the neuron at one end of the asymmetric
bond to a signal at the other end is not instantaneous but
has a dynamic memory characterized by a time constant
7. This leads to the emergence of a sequence of patterns,
each stable over a time period of the order of 7, as will

be shown below by analytical study and numerical simu-
lations. The maximum length of the sequence that can
be embedded in a network of size N is proportional to V.
We argue that under certain circumstances the se-
quences are stable even in the presence of thermal fluc-
tuations. This network provides perhaps the simplest
mechanism by which sequences of transitions between
quasiequilibrium states can be embedded in highly con-
nected systems.

We consider a network consisting of N Ising spins
{S3/.,, where S;=+1 (—1) represents the firing
(nonfiring) state of the ith neuron. The embedded pat-
terns are p states of the system {5}‘},-’!-1, u=12,...,p.
The patterns are random so that each &/ takes the values
=+ 1 with equal probabilities. The couplings between the
neurons are formed by two kinds of synapses. Synapses
of the first kind are symmetric and are given by the
“Hebb rule”

1 & .
= T et i, M
£

as in the Hopfield model.! The second kind of synapses
are

A L
Ji§2)=ﬁ i1€;‘+1 }4’ l?f], (2)
u-

where ¢ <p. The asymmetric synapses J,'}Z) define an
order among the g patterns. Cycles can be incorporated
by definition of £2¥!=¢&}, in (2). The model can be ex-
tended easily to contain several sequences and cycles,
provided that they do not compete against each other,
i.e., that a given pattern, u, is connected to only one pat-
tern, u+ 1. The addition of synapses of the form (2) was
discussed a few years ago by Hopfield,! who noted that
they are insufficient for the generation of stable se-
quences of patterns. If A is small, transitions between
the patterns do not occur at all and the patterns remain
completely stable. If A is large, the transitions occur too
fast so that the patterns are not stable even for a limited
amount of time, and the sequence is very quickly
smeared. This problem is rectified in the present work
by endowment of the synapses J,-g-” with slow dynamic
response.
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The dynamic evolution of the system is defined by the
alignment of spins with their local fields

S;(t +1) =sgnlh; ()], 3)

either sequentially or in parallel. The local fields consist
of two contributions, h;(t) =h(1)+h?(1). The first
contribution, from J,-S-”, has the usual instantaneous time
dependence,

V@) = Z JEVS; (). 4)
The contrnbutjlons from J? are
W20 =3 IO, s)
i=1
S0=f"_darwi -8, ©)

The function w (¢) represents a dynamic memory charac-
terized by a time-decay constant, 7.° We assume that
w (1) is nonnegative and is normalized by f diw()=1.
Since 72’ (1) averages the spin state over *time ~1, its
strength increases if the spin state is time persistent on
the scale of 7. Thus, for appropriate values of A, h® will
induce transition to the pattern u+1 only after the sys-
tem has stayed in the state u for a time zo which is of or-
der 7. In the following, we determine the range of A for
which stable sequences exist and the period 7o between
consecutive transitions. We will assume that > 1, al-
though in practice >4 is sufficient to generate se-
quences.®

The analysis of the emergent dynamic features of the
network is simplified in the limit where p remains finite
as N — oo, The local fields become in this case

p g
@)=Y Em '@ +r Y & m* @), (7N
v=l] v=1]
where m"(t) are the overlap with the pattern v,
m*(t)=N"'3TN &£S;(1), and m"(1) are time averages
of m", as in Eq. (6). Only overlaps which are ~1 need
to be considered.

Suppose that {S;(r <0)} are random and that
{S;(t =0)} ={&}}, so that m"(t <0)=0 and m"(+=0)
=51, After staymg in this state for a time ¢, the local
fields become k(1) =&}, K (1) =X§,2W(Ot) where
we have defined

b
Wab)= f w(t)dt. (8)

Note that W(0,¢) is a nondecreasing function of ¢ and
W(0,0) =1. Therefore, if A <1 the system will stay in
the initial pattern indefinetely. However, if A > 1 a tran-
sition to the pattern £% will occur at time to such that
W (0,t0) =A"!. This analysis is, however, valid only for
the first state and depends on the specific initial condi-
tions.

We want to study the persistence of a long sequence of
transitions (assuming that the length ¢ of the embedded
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sequence is large). After a short transient the transitions
will be equally spaced in time with “steady-state” period
to. If we neglect the transients, the system will be in the
pattern u(1<pu<gq) in the time interval ((u—1)zq,
uto). The transition of this state to the pattern g+ 1 will
start when a finite fraction of spins flip to 6““. The
first spins to flip are those with the strongest bias in
favor of &f' *1 These are spins located at sites such that
!,“"” =—¢! and all é“ happen to be equal to £#*!. In

other words, these spins have been parallel to .’,"‘4' at all
times up to (u—1)te, and parallel to &* only at
t =(u—1)19+At, 0 <At <to. Substituting these condi-
tions into Eq. (7) one finds that, for these spins, the part
of h;(¢) parallel to & is EX[1+AW(At,At+10)]. The
term AW (At,At +1¢) is the contribution of 4% resulting
from the state u—1, which appeared between
t — (At +1¢) and t —Atr. The part of h; which is parallel
to E4F = —¢gl is —AEFIW(0,) — W (AL,At +10)]. The
transition will occur at the time for which these two con-
tributions balance each other so that £/h;(z) changes
sign. Identifying this time as ¢ =uzq (i.e., At =t¢), one
finds 1+AW (10,210) =AW (0,1) — W (£0,210)]. If we as-

sume ¢>>1 [i.e,, W(0,)=1] the following equation re-
sults:

2,
W)= [ w@dt =+ 1/3). ©)

This equation determines the duration #¢ of each state in
the sequence, and its dependence on A and on w (¢).

Note that in the derivation of Eq. (9) we have neglect-
ed the transition time ¢, between patterns. This is justi-
fied in the case of large 7 since ty is short and does not
increase with 7.

From Eq. (9) it is evident that the minimum value of
A for which stable sequences occur is Ania =1 as expect-
ed. When A— Apin, 20— fmax, !max being the upper cut-
off in w, i.e., w(t > tpax) =0. The maximum value of A
for which long sequences are stable is determined by the
maximum value of A for which a solution to Eq. (9) ex-
ists.” This depends on the particular form of the memory
function w(t).

We now present three interesting examples: (1) Step
function: w(t)=1""', t <1, and vanishes otherwise. In
this case, Eq. (9) yields to=(7/2)(1+1/7), A > 1, imply-
ing a short period 1o =1/2 at large values of A and a long
period t9=1 at A=Agmin=1. (2) Exponential decay:
w (1) =77 le ~*/* Substituting in Eq. (9) yields

to=t{ln2—Inl1 —QA—-DY]}, 1<r<2.

Here to— oo as A— 1, whereas to— 7In2 as A ap-
proaches its maximum value Ay =2. (3) Time-delay:
w(t) =8(t — 7). Applying Eq. (9) to a smooth function
w (¢) which approaches a delta function, one finds to=r,
A>1.

Note that Eq. (9) imposes a finite upper bound on A in
case (2), but not in cases (1) and (3). The reason is that
the exponential decay lends a large weight to the im-
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mediate times which leads to a rapid smearing of the
transition if A is big. This effect has been verified by nu-
merical simulations. Simulations of the equations of
motion (1)-(6) have been done with N =500, p =¢ +1
=10, and 7=8. In the case of a step function, a regular
stable sequence is obtained for 0.9 <A < 5.5% whereas in
the case of an exponential decay, Amax Was found to be
—1.8. Figure 1 presents the numerical results for both
case (1) and case (2), with A =2.5.

The above analysis holds only in the limit of N — oo
and finite p. In particular, when a=p/N is finite as
N — oo the random overlaps among the patterns cannot
be ignored. Simulations show that for small a, long se-
quences are still stable. However, keeping a finite modi-
fies the bounds on the allowed range of A. On one hand,
Amin(@) is smaller than unity since fluctuations in the lo-
cal fields are capable of inducing transitions even when
A <1. On the other hand, increasing the value of A
enhances the relative level of the internal noise and
therefore Amax is expected to decrease as a function of a.
As a increases, a critical value is reached above which
sequences are not stable for any value of .. These ef-
fects were verified by numerical simulations. Using a
step function for w(z) with r=8, we find that, with
N =500, a sequence of 40 patterns can be embedded
with 0.6 SA<1.4, whereas for p =¢g + 1> 60, sequences
are not stable for any value of A; see Fig. 2. This indi-
cates that a.~0.1, in contrast to a,~0.14 in the sym-
metric (A =0) Hopfield model. The value of a, depends
on the form of w(z) as well as on the lengths and num-
ber of the embedded sequences and cycles.

An important question is whether sequences exist also
in the presence of fast stochastic noise. One can
represent such noise by use of stochastic dynamics, in
which if the spin S; is aligned with its field A;(¢) it may
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FIG. 1. Simulations of Eqgs. (3)-(6) with parallel updating,
and the parameters N =500, p =q +1 =10, r=8, and A =2.5.
(a) w(t) is a step function [case (1) in text]; (b) w(r) decays
exponentially [case (2) in text]l. The curves represent the over-
laps m", at time ¢, of the state of the system with the patterns,
£". Numbers on top of the curves denote the index v.

still flip, with a probability exp(—28|h;|). Here
B~ '=T is the “temperature” of the network denoting
the level of stochastic noise in the system. Sequences
can be stable only if the time 7 is much larger than the
time, fq, for equilibration within the free-energy *val-
ley” of the individual patterns but smaller than the “er-
godic” time, ferg, at which thermal hopping between the
valleys occurs. These restrictions may not be severe
since, in the symmetric case, when T <+, terg IS €X-
tremely big (for large N) and t.q is rather short. For
teq K Tty a well-defined sequence of g states is ex-
pected to exist in our model, at low 7. Each of these
states is a quasiequilibrium state determined by an effec-
tive free energy which changes with time (on the scale of
7). (The uth state is characterized by a large value of
m*.) At finite T, this state will also have a small overlap
with {£#*1}, and smaller overlaps with other patterns.

The present model has been discussed so far in the
context of storage and associative recall of information.
It might also be useful in understanding mechanisms for
generating rhythmic motoric patterns (such as swim-
ming and locomotion) by networks of neurons known as
central pattern generators (CPG).® Understanding the
principles underlying the function of CPG’s in ver-
tebrates as well as in invertebrates has been a long-
standing challenge in neurobiology, in particular in cases
where the networks contain mixtures of inhibitory and
excitatory synapses.

A particular simple example is an oscillatory behavior
in which the neurons alternate (coherently) between
“bursts” of activity and inactivity. This means that the
state of the network oscillates between a pattern {&;} and
its antiphase {—&;}. (Recall that the two states & =+ 1
represent the firing and nonfiring states of the neuron i.)
Such a behavior can be simply modeled by embedding
the pattern {&;} in JS" and connecting it, in J?, with
the pattern {—&;}. Generalizing to several patterns

(a)

1 2 3 35 36

[oX-] of 1

FIG. 2. Simulations of Egs. (3)-(6) with N =500, A =1.0,
and w(t) a step function with 7=8. (a) p =¢q +1=40; (b)
p=q+1=60.
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yields the symmetric network

1 & A
Ji§1)=‘1’v‘ 215:‘&{" Ji§'2)=—ﬁ i 38
=

=1

(10)

Thus, each pair of neurons is connected by a pair of exci-
tatory and inhibitory synapses, one of which has a slow
dynamic response w (t), with characteristic time 7. Al-
ternatively, this pair of synapses can be viewed as a sin-
gle synapse which changes its sign as a function of time.
This network is capable of generating p stable modes of
oscillations. Each mode consists of oscillations between
a pattern of activity, say {€/}, and its antiphase {—&}.
The period of the oscillations is of O(z). The selection
of the particular oscillation is done by, e.g., the intitial
triggering input. It is interesting to note that synapses
which differ in their response time by as much as a fac-
tor of 20 have been identified in certain CPG’s.!° De-
tailed comparison between the present model and several
well-characterized pattern generators would be very in-
teresting.

Note added— A very similar model for generating se-
quences has been proposed independently by Kleinfeld.'!
Other mechanisms have been recently proposed by
Peretto and Niez and by Nebenzahl.!?
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